Branson's Q-curvature in Riemannian and Spin Geometry

On a closed n-dimensional manifold, n ≥ 5, we compare the three basic conformally covariant operators: the Paneitz-Branson, the Yamabe and the Dirac operator (if the manifold is spin) through their first eigenvalues. On a closed 4-dimensional Riemannian manifold, we give a lower bound for the square...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2007
Автори: Hijazi, O., Raulot, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147214
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Branson's Q-curvature in Riemannian and Spin Geometry / O. Hijazi, S. Raulot // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147214
record_format dspace
spelling Hijazi, O.
Raulot, S.
2019-02-13T19:10:41Z
2019-02-13T19:10:41Z
2007
Branson's Q-curvature in Riemannian and Spin Geometry / O. Hijazi, S. Raulot // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 23 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 53C20; 53C27; 58J50
https://nasplib.isofts.kiev.ua/handle/123456789/147214
On a closed n-dimensional manifold, n ≥ 5, we compare the three basic conformally covariant operators: the Paneitz-Branson, the Yamabe and the Dirac operator (if the manifold is spin) through their first eigenvalues. On a closed 4-dimensional Riemannian manifold, we give a lower bound for the square of the first eigenvalue of the Yamabe operator in terms of the total Branson's Q-curvature. As a consequence, if the manifold is spin, we relate the first eigenvalue of the Dirac operator to the total Branson's Q-curvature. Equality cases are also characterized.
This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson. We would like to thank the referees for their careful reading and suggestions.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Branson's Q-curvature in Riemannian and Spin Geometry
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Branson's Q-curvature in Riemannian and Spin Geometry
spellingShingle Branson's Q-curvature in Riemannian and Spin Geometry
Hijazi, O.
Raulot, S.
title_short Branson's Q-curvature in Riemannian and Spin Geometry
title_full Branson's Q-curvature in Riemannian and Spin Geometry
title_fullStr Branson's Q-curvature in Riemannian and Spin Geometry
title_full_unstemmed Branson's Q-curvature in Riemannian and Spin Geometry
title_sort branson's q-curvature in riemannian and spin geometry
author Hijazi, O.
Raulot, S.
author_facet Hijazi, O.
Raulot, S.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description On a closed n-dimensional manifold, n ≥ 5, we compare the three basic conformally covariant operators: the Paneitz-Branson, the Yamabe and the Dirac operator (if the manifold is spin) through their first eigenvalues. On a closed 4-dimensional Riemannian manifold, we give a lower bound for the square of the first eigenvalue of the Yamabe operator in terms of the total Branson's Q-curvature. As a consequence, if the manifold is spin, we relate the first eigenvalue of the Dirac operator to the total Branson's Q-curvature. Equality cases are also characterized.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147214
citation_txt Branson's Q-curvature in Riemannian and Spin Geometry / O. Hijazi, S. Raulot // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 23 назв. — англ.
work_keys_str_mv AT hijazio bransonsqcurvatureinriemannianandspingeometry
AT raulots bransonsqcurvatureinriemannianandspingeometry
first_indexed 2025-12-02T03:29:23Z
last_indexed 2025-12-02T03:29:23Z
_version_ 1850861485072318464