Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions
The main contribution of our paper is to give a partial classification of the quasi-exactly solvable Lie algebras of first order differential operators in three variables, and to show how this can be applied to the construction of new quasi-exactly solvable Schrödinger operators in three dimensions....
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2007 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2007
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147219 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions / M. Fortin Boisvert // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 26 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147219 |
|---|---|
| record_format |
dspace |
| spelling |
Fortin Boisvert, M. 2019-02-13T19:16:15Z 2019-02-13T19:16:15Z 2007 Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions / M. Fortin Boisvert // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 26 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81Q70; 22E70; 53C80 https://nasplib.isofts.kiev.ua/handle/123456789/147219 The main contribution of our paper is to give a partial classification of the quasi-exactly solvable Lie algebras of first order differential operators in three variables, and to show how this can be applied to the construction of new quasi-exactly solvable Schrödinger operators in three dimensions. The research is supported by a NSERC Grant #RGPIN 105490 − 2004 and a McGill Graduate Studies Fellowship. I would like to thank Niky Kamran, for all the encouragement and the precious advice he gave me. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions |
| spellingShingle |
Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions Fortin Boisvert, M. |
| title_short |
Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions |
| title_full |
Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions |
| title_fullStr |
Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions |
| title_full_unstemmed |
Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions |
| title_sort |
quasi-exactly solvable schrödinger operators in three dimensions |
| author |
Fortin Boisvert, M. |
| author_facet |
Fortin Boisvert, M. |
| publishDate |
2007 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
The main contribution of our paper is to give a partial classification of the quasi-exactly solvable Lie algebras of first order differential operators in three variables, and to show how this can be applied to the construction of new quasi-exactly solvable Schrödinger operators in three dimensions.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147219 |
| citation_txt |
Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions / M. Fortin Boisvert // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 26 назв. — англ. |
| work_keys_str_mv |
AT fortinboisvertm quasiexactlysolvableschrodingeroperatorsinthreedimensions |
| first_indexed |
2025-12-07T13:25:17Z |
| last_indexed |
2025-12-07T13:25:17Z |
| _version_ |
1850856091600027648 |