Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions

The main contribution of our paper is to give a partial classification of the quasi-exactly solvable Lie algebras of first order differential operators in three variables, and to show how this can be applied to the construction of new quasi-exactly solvable Schrödinger operators in three dimensions....

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2007
Автор: Fortin Boisvert, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147219
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions / M. Fortin Boisvert // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 26 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147219
record_format dspace
spelling Fortin Boisvert, M.
2019-02-13T19:16:15Z
2019-02-13T19:16:15Z
2007
Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions / M. Fortin Boisvert // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 26 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 81Q70; 22E70; 53C80
https://nasplib.isofts.kiev.ua/handle/123456789/147219
The main contribution of our paper is to give a partial classification of the quasi-exactly solvable Lie algebras of first order differential operators in three variables, and to show how this can be applied to the construction of new quasi-exactly solvable Schrödinger operators in three dimensions.
The research is supported by a NSERC Grant #RGPIN 105490 − 2004 and a McGill Graduate Studies Fellowship. I would like to thank Niky Kamran, for all the encouragement and the precious advice he gave me.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions
spellingShingle Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions
Fortin Boisvert, M.
title_short Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions
title_full Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions
title_fullStr Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions
title_full_unstemmed Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions
title_sort quasi-exactly solvable schrödinger operators in three dimensions
author Fortin Boisvert, M.
author_facet Fortin Boisvert, M.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The main contribution of our paper is to give a partial classification of the quasi-exactly solvable Lie algebras of first order differential operators in three variables, and to show how this can be applied to the construction of new quasi-exactly solvable Schrödinger operators in three dimensions.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147219
citation_txt Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions / M. Fortin Boisvert // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 26 назв. — англ.
work_keys_str_mv AT fortinboisvertm quasiexactlysolvableschrodingeroperatorsinthreedimensions
first_indexed 2025-12-07T13:25:17Z
last_indexed 2025-12-07T13:25:17Z
_version_ 1850856091600027648