Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian

For a class of singular potentials, including the Coulomb potential (in three and less dimensions) and V(x) = g/x² with the coefficient g in a certain range (x being a space coordinate in one or more dimensions), the corresponding Schrödinger operator is not automatically self-adjoint on its natural...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2007
Main Author: Fülöp, T.
Format: Article
Language:English
Published: Інститут математики НАН України 2007
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/147221
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian / T. Fülöp // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:For a class of singular potentials, including the Coulomb potential (in three and less dimensions) and V(x) = g/x² with the coefficient g in a certain range (x being a space coordinate in one or more dimensions), the corresponding Schrödinger operator is not automatically self-adjoint on its natural domain. Such operators admit more than one self-adjoint domain, and the spectrum and all physical consequences depend seriously on the self-adjoint version chosen. The article discusses how the self-adjoint domains can be identified in terms of a boundary condition for the asymptotic behaviour of the wave functions around the singularity, and what physical differences emerge for different self-adjoint versions of the Hamiltonian. The paper reviews and interprets known results, with the intention to provide a practical guide for all those interested in how to approach these ambiguous situations.
ISSN:1815-0659