Accelerating structure with combined radio-frequency focusing for acceleration of heavy ions A/q ≤ 20 to energy 1 MeV/u
A general arrangement of initial part for multicharged ion linac (MILAC) with two-segment accelerating structure has been developed. The first segment, an interdigital H-type (IH) accelerating structure with radio-frequency quadrupole (RFQ) focusing provides ion acceleration from 6 up to 100 keV/u...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2018 |
| Main Authors: | , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/147232 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Accelerating structure with combined radio-frequency focusing for acceleration of heavy ions A/q ≤ 20 to energy 1 MeV/u / S.S. Tishkin, A.F. Dyachenko, B.V. Zaitsev, А.P. Коbets, К.V. Pavlii // Вопросы атомной науки и техники. — 2018. — № 3. — С. 8-11. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147232 |
|---|---|
| record_format |
dspace |
| spelling |
Tishkin, S.S. Dyachenko, A.F. Zaitsev, B.V. Коbets, А.P. Pavlii, К.V. 2019-02-13T19:37:48Z 2019-02-13T19:37:48Z 2018 Accelerating structure with combined radio-frequency focusing for acceleration of heavy ions A/q ≤ 20 to energy 1 MeV/u / S.S. Tishkin, A.F. Dyachenko, B.V. Zaitsev, А.P. Коbets, К.V. Pavlii // Вопросы атомной науки и техники. — 2018. — № 3. — С. 8-11. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 29.17.w, 29.27.Bd https://nasplib.isofts.kiev.ua/handle/123456789/147232 A general arrangement of initial part for multicharged ion linac (MILAC) with two-segment accelerating structure has been developed. The first segment, an interdigital H-type (IH) accelerating structure with radio-frequency quadrupole (RFQ) focusing provides ion acceleration from 6 up to 100 keV/u with high capture efficiency of injected ions. The second segment consisting of IH accelerating structure based on a combination of alternating phase and quadrupole radio-frequency focusing (CRFF) delivers radial-phase stability to ion acceleration from 100 up to 975 keV/u. Розроблено загальну схему початкової частини лінійного прискорювача багатозарядних іонів (ЛПБЗІ), прискорююча структура якого складається з двох ділянок. На першій ділянці прискорення іонів від (6 до 100 кеВ/нукл.) високе захоплення в процес прискорення інжектованих іонів забезпечить зустрічно-штирьова (IH) прискорююча структура з просторово однорідним квадрупольним фокусуванням (ПОКФ), на другій ділянці (від 100 до 975 кеВ/нукл.) радіально-фазова стійкість іонів досягається за допомогою IHприскорюючої структури на основі комбінації змінно-фазового та квадрупольного високочастотного фокусувань (КВЧФ). Разработана общая схема начальной части линейного ускорителя многозарядных ионов (ЛУМЗИ), ускоряющая структура которой состоит из двух участков. На первом участке ускорения ионов (от 6 до 100 кэВ/нукл.) высокий захват в процесс ускорения инжектированных ионов обеспечит встречно-штыревая (IH) ускоряющая структура с пространственно однородной квадрупольной фокусировкой (ПОКФ), на втором участке (от 100 до 975 кэВ/нукл.) радиально-фазовая устойчивость ионов достигается c помощью IHускоряющей структуры на основе комбинации переменно-фазовой и квадрупольной высокочастотной фокусировок (КВЧФ). en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Теория и техника ускорения частиц Accelerating structure with combined radio-frequency focusing for acceleration of heavy ions A/q ≤ 20 to energy 1 MeV/u Ускоряющая структура с комбинированной высокочастотной фокусировкой для ускорения тяжелых ионов С A/q ≤ 20 до энергии 1 МэВ/нукл. Прискорююча структура з комбінованим високочастотним фокусуванням для прискорення важких іонів з A/q ≤ 20 до енергії 1 МеВ/нукл Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Accelerating structure with combined radio-frequency focusing for acceleration of heavy ions A/q ≤ 20 to energy 1 MeV/u |
| spellingShingle |
Accelerating structure with combined radio-frequency focusing for acceleration of heavy ions A/q ≤ 20 to energy 1 MeV/u Tishkin, S.S. Dyachenko, A.F. Zaitsev, B.V. Коbets, А.P. Pavlii, К.V. Теория и техника ускорения частиц |
| title_short |
Accelerating structure with combined radio-frequency focusing for acceleration of heavy ions A/q ≤ 20 to energy 1 MeV/u |
| title_full |
Accelerating structure with combined radio-frequency focusing for acceleration of heavy ions A/q ≤ 20 to energy 1 MeV/u |
| title_fullStr |
Accelerating structure with combined radio-frequency focusing for acceleration of heavy ions A/q ≤ 20 to energy 1 MeV/u |
| title_full_unstemmed |
Accelerating structure with combined radio-frequency focusing for acceleration of heavy ions A/q ≤ 20 to energy 1 MeV/u |
| title_sort |
accelerating structure with combined radio-frequency focusing for acceleration of heavy ions a/q ≤ 20 to energy 1 mev/u |
| author |
Tishkin, S.S. Dyachenko, A.F. Zaitsev, B.V. Коbets, А.P. Pavlii, К.V. |
| author_facet |
Tishkin, S.S. Dyachenko, A.F. Zaitsev, B.V. Коbets, А.P. Pavlii, К.V. |
| topic |
Теория и техника ускорения частиц |
| topic_facet |
Теория и техника ускорения частиц |
| publishDate |
2018 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Ускоряющая структура с комбинированной высокочастотной фокусировкой для ускорения тяжелых ионов С A/q ≤ 20 до энергии 1 МэВ/нукл. Прискорююча структура з комбінованим високочастотним фокусуванням для прискорення важких іонів з A/q ≤ 20 до енергії 1 МеВ/нукл |
| description |
A general arrangement of initial part for multicharged ion linac (MILAC) with two-segment accelerating structure
has been developed. The first segment, an interdigital H-type (IH) accelerating structure with radio-frequency quadrupole (RFQ) focusing provides ion acceleration from 6 up to 100 keV/u with high capture efficiency of injected ions.
The second segment consisting of IH accelerating structure based on a combination of alternating phase and quadrupole radio-frequency focusing (CRFF) delivers radial-phase stability to ion acceleration from 100 up to 975 keV/u.
Розроблено загальну схему початкової частини лінійного прискорювача багатозарядних іонів (ЛПБЗІ),
прискорююча структура якого складається з двох ділянок. На першій ділянці прискорення іонів від (6 до
100 кеВ/нукл.) високе захоплення в процес прискорення інжектованих іонів забезпечить зустрічно-штирьова
(IH) прискорююча структура з просторово однорідним квадрупольним фокусуванням (ПОКФ), на другій
ділянці (від 100 до 975 кеВ/нукл.) радіально-фазова стійкість іонів досягається за допомогою IHприскорюючої структури на основі комбінації змінно-фазового та квадрупольного високочастотного фокусувань (КВЧФ).
Разработана общая схема начальной части линейного ускорителя многозарядных ионов (ЛУМЗИ), ускоряющая структура которой состоит из двух участков. На первом участке ускорения ионов (от 6 до
100 кэВ/нукл.) высокий захват в процесс ускорения инжектированных ионов обеспечит встречно-штыревая
(IH) ускоряющая структура с пространственно однородной квадрупольной фокусировкой (ПОКФ), на втором участке (от 100 до 975 кэВ/нукл.) радиально-фазовая устойчивость ионов достигается c помощью IHускоряющей структуры на основе комбинации переменно-фазовой и квадрупольной высокочастотной фокусировок (КВЧФ).
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147232 |
| citation_txt |
Accelerating structure with combined radio-frequency focusing for acceleration of heavy ions A/q ≤ 20 to energy 1 MeV/u / S.S. Tishkin, A.F. Dyachenko, B.V. Zaitsev, А.P. Коbets, К.V. Pavlii // Вопросы атомной науки и техники. — 2018. — № 3. — С. 8-11. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT tishkinss acceleratingstructurewithcombinedradiofrequencyfocusingforaccelerationofheavyionsaq20toenergy1mevu AT dyachenkoaf acceleratingstructurewithcombinedradiofrequencyfocusingforaccelerationofheavyionsaq20toenergy1mevu AT zaitsevbv acceleratingstructurewithcombinedradiofrequencyfocusingforaccelerationofheavyionsaq20toenergy1mevu AT kobetsap acceleratingstructurewithcombinedradiofrequencyfocusingforaccelerationofheavyionsaq20toenergy1mevu AT pavliikv acceleratingstructurewithcombinedradiofrequencyfocusingforaccelerationofheavyionsaq20toenergy1mevu AT tishkinss uskorâûŝaâstrukturaskombinirovannoivysokočastotnoifokusirovkoidlâuskoreniâtâželyhionovsaq20doénergii1mévnukl AT dyachenkoaf uskorâûŝaâstrukturaskombinirovannoivysokočastotnoifokusirovkoidlâuskoreniâtâželyhionovsaq20doénergii1mévnukl AT zaitsevbv uskorâûŝaâstrukturaskombinirovannoivysokočastotnoifokusirovkoidlâuskoreniâtâželyhionovsaq20doénergii1mévnukl AT kobetsap uskorâûŝaâstrukturaskombinirovannoivysokočastotnoifokusirovkoidlâuskoreniâtâželyhionovsaq20doénergii1mévnukl AT pavliikv uskorâûŝaâstrukturaskombinirovannoivysokočastotnoifokusirovkoidlâuskoreniâtâželyhionovsaq20doénergii1mévnukl AT tishkinss priskorûûčastrukturazkombínovanimvisokočastotnimfokusuvannâmdlâpriskorennâvažkihíonívzaq20doenergíí1mevnukl AT dyachenkoaf priskorûûčastrukturazkombínovanimvisokočastotnimfokusuvannâmdlâpriskorennâvažkihíonívzaq20doenergíí1mevnukl AT zaitsevbv priskorûûčastrukturazkombínovanimvisokočastotnimfokusuvannâmdlâpriskorennâvažkihíonívzaq20doenergíí1mevnukl AT kobetsap priskorûûčastrukturazkombínovanimvisokočastotnimfokusuvannâmdlâpriskorennâvažkihíonívzaq20doenergíí1mevnukl AT pavliikv priskorûûčastrukturazkombínovanimvisokočastotnimfokusuvannâmdlâpriskorennâvažkihíonívzaq20doenergíí1mevnukl |
| first_indexed |
2025-11-24T11:44:39Z |
| last_indexed |
2025-11-24T11:44:39Z |
| _version_ |
1850845729523761152 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2018. №3(115) 8
THEORY AND TECHNOLOGY OF PARTICLE ACCELERATION
ACCELERATING STRUCTURE WITH COMBINED
RADIO-FREQUENCY FOCUSING FOR ACCELERATION
OF HEAVY IONS A/q ≤ 20 TO ENERGY 1 MeV/u
S.S. Tishkin, A.F. Dyachenko, B.V. Zaitsev, А.P. Коbets, К.V. Pavlii
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: tishkin@kipt.kharkov.ua
A general arrangement of initial part for multicharged ion linac (MILAC) with two-segment accelerating structure
has been developed. The first segment, an interdigital H-type (IH) accelerating structure with radio-frequency quadru-
pole (RFQ) focusing provides ion acceleration from 6 up to 100 keV/u with high capture efficiency of injected ions.
The second segment consisting of IH accelerating structure based on a combination of alternating phase and quadru-
pole radio-frequency focusing (CRFF) delivers radial-phase stability to ion acceleration from 100 up to 975 keV/u.
PACS: 29.17.w, 29.27.Bd
INTRODUCTION
The studies into application of high-energy heavy
ion beams to various fields of nuclear physics and ener-
getics, radiating material technology, medicine, applied
science are in progress on the Kharkiv linear accelerator
of multicharged ions (MILAC) including investigations
of fusion and quasi-fission of heavy nuclei, influence of
accelerated charged particles on constructional materi-
als, radionuclide production etc. On this basis it is im-
portant to conduct investigations into an optimal initial
pre-stripping section of MILAC accelerator.
Nowadays, the initial part of MILAC accelerator in-
cludes a high-voltage injector with output energy
33 keV/u and a pre-stripping section with grid focusing
POS-15 for acceleration of heavy ions with mass-to-
charge ratio A/q ≤ 15 up to 0.975 MeV/u. After leaving
the POS-15 section, the accelerated ions pass through a
thin carbon film increasing their charge (mass-to-charge
ratio becomes A/q ≤ 5) and then undergo acceleration
up to 8.5 MeV/u in the main section OS-5. The high-
voltage injector and the pre-stripping section with grid
focusing POS-15 do not allow acceleration of intense,
up to 10 mA in a pulse, heavy ion beams in a wide
range of masses.
Replacing grid focusing with focusing by an elec-
tromagnetic quadrupole lens placed inside a drift tube
encounters certain difficulties. It is well known that the
electromagnetic lens as an accelerator technological unit
is rather complicated in manufacturing and demands a
cooling system and an independent power supply. Fo-
cusing rigidity of the quadrupole electromagnetic lens is
proportional to particle velocity; therefore it is neces-
sary to use strong lenses for heavy ions at low energy.
But it is rather difficult to fit such a lens into a small
drift tube that corresponds to low relative velocity β. In
our case, the ion relative velocity equals β = 0.0007 at
the pre-stripping section POS-15 inlet and the drift tube
length of IH accelerating structure operating at
47.2 MHz in which the first quadrupole is to be placed,
makes βλ/4 = 1.1 cm. So, such variant is almost imprac-
ticable. Besides, there also exist some difficulties in
operating the high-voltage injector.
The objective of this paper is to present the initial
pre-stripping section of heavy ion linac which is simple
in construction design and at the same time allows an
acceleration of wide range of ions, a considerable in-
crease in accelerated beam current, and a simplification
of accelerator injector system.
1. THE OPTIMUM CHOICE
OF ACCELERATING AND FOCUSING
CHANNEL OF THE STRUCTURE
WITH CRFF
An alternative to a heavy ion linac with external fo-
cusing devices is an accelerator in which an accelerating
field is used to focus charged particle beams. The high-
current linac proton injector URAL-30 is one of such
accelerators [1]. Another similar accelerator for 31
197Au
acceleration was built in IHEP (Institute of High Energies
Physics, Protvino, Russia) and JINR (Joint Institute for
Nuclear Researches, Dubna) [2]. A "double gap" concept
was implemented for beam acceleration and focusing in
the main section of this accelerator [3]. According to the
"double gap" concept, to ensure radial and phase beam
stability, an additional electrode was introduced into each
accelerating gap dividing it into two parts: axisymmetric
and quadrupole. Particle acceleration and phasing oc-
curred in the former part while a quadrupole field com-
ponent was generated due to introduction of additional
electrodes "horns" in the latter one. Periodic change in RF
quadrupole orientation in the adjacent accelerating peri-
ods provided radially stable particle movement.
The usage of such structures allows elimination of
complex electromagnetic lenses with independent cool-
ing system and power supply from the accelerator de-
sign and simplifies accelerator manufacture and mainte-
nance. The drawback of this method is rather low accel-
eration rate.
Contrary to the "double gap"-structure, the structure
with combined alternating-phase and quadrupole RF fo-
cusing (CRFF) includes a combination of "full" axisym-
metric accelerating and quadrupole gaps [4]. The usage of
such combination provides an increase in acceleration
rate and focusing rigidity. Fig. 1 presents the accelerating
and focusing section with CRFF consisting of three ac-
celerating gaps and one "doubled" quadrupole section.
The accelerating structure with CRFF as a pre-
stripping section of heavy ion linac makes it possible to
increase accelerated current and to widen the range of
accelerated ions.
ISSN 1562-6016. ВАНТ. 2018. №3(115) 9
Fig. 1. Fragment of the accelerating and focusing
section with CRFF
The pre-stripping section in service today is com-
posed of (1) the high-voltage injector (500 kV), the
POS-15 section (1 MeV/u, A/q = 15), and (3) the main
section OS-5 (8.5 MeV/u, A/q = 5) as demonstrated on
Fig. 2,a.
a
b
Fig. 2. Schematic representation of linac: a) linear accelerator in service (A/q = 15);
b) alternative linac with focusing RF field in pre-stripping section (A/q = 20)
To increase stability of the injecting system we sug-
gest replacing the high-voltage injector with the
120 kV-source. The accelerating part of the pre-
stripping section will consist of two segments: the first
segment is based on the RFQ structure [5] and the
CRFF structure makes the second one (see Fig. 2,b).
One of the advantages of the CRFF structure is inde-
pendence of RF quadrupole focusing from the particle
velocity. It makes possible to shorten the RFQ segment
length since this segment only forms a bunch and does
not accelerate it.
The RFQ electrodes measure ~ 3 m in length, energy
ranges 0.006…0.1 MeV/u, beam capture efficiency
reaches ≥ 80% under acceleration mode at input current
of 10 мА (A/q = 20).
The CRFF segment length, the value of accelerated
current and beam emittance vary with the focusing peri-
od structure. The following patterns for the focusing
period have been considered:
1. The focusing period has 6 axisymmetric accelerat-
ing gaps – FOOODDOOOF, where F is an accelerating
period with a focusing quadrupole that focuses in trans-
verse direction (say, along X-coordinate), D denotes a
defocusing segment, and O represents an axisymmetric
accelerating gap.
2. The focusing period includes 8 axisymmetric ac-
celerating gaps – FOOOODDOOOOF.
3. The focusing period with 10 axisymmetric accel-
erating gaps – FOOOOODDOOOOOF.
4. The mixed focusing period: the pattern is
FOOODDOOOF for energy range 0.1…0.4 MeV/u and
FOOOOODDOOOOOF for energies 0.4…1.0 MeV/u.
As expected, the first-pattern focusing period pro-
vides the maximum value for current under acceleration
mode, the minimum increase in beam emittance and the
maximum length of the accelerating channel. The CRFF
segment measures ~ 8 m in length, energy ranges
0.1…1.0 MeV/u, beam capture efficiency reaches
≥ 98% under acceleration mode at input current of
18 мА (A/q = 20). Fig. 3 depicts the phase portrait, the
vertical and horizontal beam profiles at various posi-
tions inside the pre-stripping accelerator section.
The patterns #2 and 3 produce the smaller length of
the accelerating channel, i.e. 7.2 and 6.0 m correspond-
ingly, but demonstrate lower accelerated current
(≤ 8 mA) and higher beam emittance. The pattern #4
consisting of two different periods is a compromise. In
this case the CRFF segment length is ~ 7 m and the ac-
celerated current is ≥ 9.8 mA.
Fig. 3. Phase portrait, vertical and horizontal beam profiles: a) at the entry-point of the RFQ structure;
b) at the entrance to the CRFF structure; c) at the output of the CRFF structure
a b c
ISSN 1562-6016. ВАНТ. 2018. №3(115) 10
2. REALIZATION OF THE ACCELERATING
AND FOCUSING CHANNEL WITH CRFF
ON THE BASIS OF INTERDIGITAL
STRUCTURE
There are two possibilities to implement the acceler-
ating and focusing structure with CRFF in the pre-
stripping section of the heavy ion linac. One way is to
insert this structure into one extended resonator; the
other way is to use two shorter resonators to simplify
RF-field adjustment (Figs. 4 and 5).
Fig. 4. The schematic view of the accelerating structure
with CRFF for energy range 0.1…0.4 MeV/u,
the focusing period pattern is FOOODDOOOF
Fig. 5. The schematic view of the accelerating structure
with CRFF for energy range 0.4…1 MeV/u, the focusing
period pattern is FOOOOODDOOOOOF
Experiments have been carried out on models of the
structure with CRFF (1/3). The RF field has been local-
ly tuned by rotation of the shaft holding the central drift
tube of the quadrupole segment [6]. It should be noted
that in the IH structure it is possible to add an extra shaft
symmetrical to the rotated one to enhance the mechani-
cal strength of the whole system (Figs. 6 and 7). Such
an addition has almost no effect on electrodynamic
characteristics of the structure.
Referring to Fig. 8, the relation between the poten-
tial difference in the axisymmetric and quadrupole gaps
depends on a tilt angle of the shaft and is local. Global
tuning (field flattening in the axisymmetric segments
along the whole accelerating structure) has been per-
formed by the usage of end resonant adjusting elements
(ERAE).
Fig. 6. The quadrupole segment of the accelerating
model structure with CRFF
Fig. 7. General view of the model for accelerating and
focusing channel with CRFF with adjusting elements
а
b
Fig. 8. Example of RF field tuning on the model structure with CRFF for the focusing period FOOОDDOООF:
a) the shafts are swung 110° to either side of initial position (left) and corresponding distribution of Ez component
of the RF field along the accelerating structure (right); for a corner of bars turn concerning initial position
in IH structures on ±110° and distribution Ez component of RF field along accelerating structure;
b) the rotation angle is ±160°(left) and corresponding Ez distribution (right)
ISSN 1562-6016. ВАНТ. 2018. №3(115) 11
CONCLUSIONS
Theoretical and experimental studies have shown
that the usage of the CRFF accelerating structure allows
a considerable simplification in manufacturing and op-
erating of the pre-stripping section of heavy ion linac, a
widening the range of accelerated ions (up to A/q = 20),
and an increase in accelerated current (up to 10 mA).
The relatively small length of the CRFF accelerating
structure (about 7 m for the focusing period of mixed
type) together with the shortened RFQ accelerating sec-
tion (about 3 m) presents the opportunity to fully exploit
available equipment on the limited floor space.
It has also been demonstrated that the usage of ad-
justing elements designed, developed and put into prac-
tice at the NSC KIPT for RF field tuning in the IH struc-
tures [7 - 10] makes it possible to obtain necessary for
the CRFF structure field distribution along the whole
accelerating structure.
REFERENCES
1. A.A. Egorov, V.A. Zenin, S.A. Ilinsky. Launch of
Ural-30 linear accelerator// Zhurnal Tekhnicheskoi
Fiziki. 1981, v. 51, № 8, p. 1643-1647 (in Russian).
2. O.K. Belyaev, Yu.A. Budanov, I.A. Zonarev. Linear
accelerator of heavy ions with high-frequency quad-
rupole focusing // Physics of Elementary Particles
and Atomic Nuclei, Letter. 2013, v. 10. № 7(184),
p. 1292-1303.
3. V.A. Teplyakov. The use of high-frequency quadru-
pole focusing in linear ion accelerators // Proceed-
ings of the 2nd All-Union Conference on Accelera-
tors of Charged Particles. M.: “Nauka”, 1972, v. 2,
p. 7-11.
4. S.S. Tishkin. Combined focusing by RF-field for ion
linac accelerators // The Journal of Kharkiv National
University. Physical Series “Nuclear, Particle”.
2008, № 808, Issue 2(38), p. 37-46.
5. V.O. Bomko, B.V. Zajtsev, J.V. Ivakhno,
A.P. Kobets, K.V. Pavlii, Z.E. Ptukhina,
S.S. Tishkin. Accelerating structure with radio-
frequency quadrupole (RFQ) for the heavy ions ac-
celerating // Problems of Atomic Sience and Tech-
nology. Series “Nuclear Physics Investigations”.
2010, № 3(54), p. 26-30.
6. A.F. Dyachenko, B.V. Zaytsev, S.S. Tishkin,
Ya.N. Fedeneva, N.G. Shulika, O.N. Shulika. An
accelerating and focusing structure with combined
RF focusing for heavy ion accelerator // Problems of
Atomic Sience and Technology. Series “Nuclear
Physics Investigations”. 2014, № 3(62), p. 16-19.
7. V.O. Bomko, A.F. Dyachenko, A.P. Kobets. Re-
search of structures for acceleration of heavy ions.
М.: “CNIIatominform”, 1988, 26 с. (in Russian).
8. V.O. Bomko, A.F. Dyachenko, B.V. Zajtsev,
A.P. Kobets, J.V. Ivakhno, K.V. Pavlii,
Ja.N. Fedeneva, S.N. Dubniuk, S.S. Tishkin,
Z.E. Ptukhina. Inductance-capacitor system for tun-
ing of interdigital structure of the ion linear accelera-
tor // Problems of Atomic Sience and Technology.
Series “Nuclear Physics Investigations”. 2007,
№ 5(48), p. 180-183.
9. V.O. Bomko, A.F. Dyachenko, B.V. Zajtsev,
A.P. Kobets, S.S. Tishkin. Experimental modelling
of the hybrid accelerating structure of heavy ion lin-
ear accelerator // Problems of Atomic Sience and
Technology. Series “Nuclear Physics Investiga-
tions”. 2016, № 3(103), p. 17-20.
10. V.O. Bomko, A.F. Dyachenko, B.V. Zajtsev,
A.P. Kobets, S.S. Tishkin. Regulation of level RF
field in hybrid structures of heavy ions linear accel-
erator // Problems of Atomic Sience and Technology.
Series “Nuclear Physics Investigations”. 2016,
№ 3(103), p. 21-25.
Article received 09.02.2018
УСКОРЯЮЩАЯ СТРУКТУРА С КОМБИНИРОВАННОЙ ВЫСОКОЧАСТОТНОЙ
ФОКУСИРОВКОЙ ДЛЯ УСКОРЕНИЯ ТЯЖЕЛЫХ ИОНОВ С A/q ≤ 20 ДО ЭНЕРГИИ 1 МэВ/нукл.
С.С. Тишкин, А.Ф. Дьяченко, Б.В. Зайцев, А.Ф. Кобец, К.В. Павлий
Разработана общая схема начальной части линейного ускорителя многозарядных ионов (ЛУМЗИ), уско-
ряющая структура которой состоит из двух участков. На первом участке ускорения ионов (от 6 до
100 кэВ/нукл.) высокий захват в процесс ускорения инжектированных ионов обеспечит встречно-штыревая
(IH) ускоряющая структура с пространственно однородной квадрупольной фокусировкой (ПОКФ), на вто-
ром участке (от 100 до 975 кэВ/нукл.) радиально-фазовая устойчивость ионов достигается c помощью IH-
ускоряющей структуры на основе комбинации переменно-фазовой и квадрупольной высокочастотной фоку-
сировок (КВЧФ).
ПРИСКОРЮЮЧА СТРУКТУРА З КОМБІНОВАНИМ ВИСОКОЧАСТОТНИМ ФОКУСУВАННЯМ
ДЛЯ ПРИСКОРЕННЯ ВАЖКИХ ІОНІВ З A/q ≤ 20 ДО ЕНЕРГІЇ 1 МеВ/нукл.
С.С. Тішкін, О.Ф. Дьяченко, Б.В. Зайцев, А.П. Кобець, К.В. Павлій
Розроблено загальну схему початкової частини лінійного прискорювача багатозарядних іонів (ЛПБЗІ),
прискорююча структура якого складається з двох ділянок. На першій ділянці прискорення іонів від (6 до
100 кеВ/нукл.) високе захоплення в процес прискорення інжектованих іонів забезпечить зустрічно-штирьова
(IH) прискорююча структура з просторово однорідним квадрупольним фокусуванням (ПОКФ), на другій
ділянці (від 100 до 975 кеВ/нукл.) радіально-фазова стійкість іонів досягається за допомогою IH-
прискорюючої структури на основі комбінації змінно-фазового та квадрупольного високочастотного фоку-
сувань (КВЧФ).
|