Nuclear constants database for fuel isotope change estimation

Description of database and client program developed by the authors and designed to store, process and extract nuclear constants used in calculations of nuclear fuel isotope changes is presented. On the basis of the designed database, a comprehensive program was developed. The program allows calcul...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2018
Main Authors: Golovkina, A.G., Loskutova, A.D., Ovsyannikov, D.A.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/147309
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Nuclear constants database for fuel isotope change estimation / A.G. Golovkina, A.D. Loskutova, D.A. Ovsyannikov // Вопросы атомной науки и техники. — 2018. — № 3. — С. 159-162. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147309
record_format dspace
spelling Golovkina, A.G.
Loskutova, A.D.
Ovsyannikov, D.A.
2019-02-14T12:02:23Z
2019-02-14T12:02:23Z
2018
Nuclear constants database for fuel isotope change estimation / A.G. Golovkina, A.D. Loskutova, D.A. Ovsyannikov // Вопросы атомной науки и техники. — 2018. — № 3. — С. 159-162. — Бібліогр.: 17 назв. — англ.
1562-6016
PACS: 29.87.+g, 28.41.Kw, 28.41.Ak
https://nasplib.isofts.kiev.ua/handle/123456789/147309
Description of database and client program developed by the authors and designed to store, process and extract nuclear constants used in calculations of nuclear fuel isotope changes is presented. On the basis of the designed database, a comprehensive program was developed. The program allows calculating the change in nuclear concentration and activity of fuel isotopes during irradiation and exposure.
Представлено опис розробленої авторами бази даних і клієнтської програми, призначених для зберігання, обробки та вилучення ядерних констант, використовуваних при розрахунках динаміки зміни ізотопного складу ядерного палива. На основі створеної бази даних була розроблена комплексна програма, що дозволяє розраховувати зміну ядерної концентрації і активності ізотопів паливної композиції в процесі опромінення і витримки.
Представлено описание разработанной авторами базы данных и клиентской программы, предназначенных для хранения, обработки и извлечения ядерных констант, используемых при расчетах динамики изменения изотопного состава ядерного топлива. На основе созданной базы данных была разработана комплексная программа, позволяющая рассчитывать изменение ядерной концентрации и активности изотопов топливной композиции в процессе облучения и выдержки.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Применение ядерных методов
Nuclear constants database for fuel isotope change estimation
База даних ядерних констант для оцінки зміни ізотопного складу палива
База данных ядерных констант для оценки измерения изотопного состава топлива
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Nuclear constants database for fuel isotope change estimation
spellingShingle Nuclear constants database for fuel isotope change estimation
Golovkina, A.G.
Loskutova, A.D.
Ovsyannikov, D.A.
Применение ядерных методов
title_short Nuclear constants database for fuel isotope change estimation
title_full Nuclear constants database for fuel isotope change estimation
title_fullStr Nuclear constants database for fuel isotope change estimation
title_full_unstemmed Nuclear constants database for fuel isotope change estimation
title_sort nuclear constants database for fuel isotope change estimation
author Golovkina, A.G.
Loskutova, A.D.
Ovsyannikov, D.A.
author_facet Golovkina, A.G.
Loskutova, A.D.
Ovsyannikov, D.A.
topic Применение ядерных методов
topic_facet Применение ядерных методов
publishDate 2018
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt База даних ядерних констант для оцінки зміни ізотопного складу палива
База данных ядерных констант для оценки измерения изотопного состава топлива
description Description of database and client program developed by the authors and designed to store, process and extract nuclear constants used in calculations of nuclear fuel isotope changes is presented. On the basis of the designed database, a comprehensive program was developed. The program allows calculating the change in nuclear concentration and activity of fuel isotopes during irradiation and exposure. Представлено опис розробленої авторами бази даних і клієнтської програми, призначених для зберігання, обробки та вилучення ядерних констант, використовуваних при розрахунках динаміки зміни ізотопного складу ядерного палива. На основі створеної бази даних була розроблена комплексна програма, що дозволяє розраховувати зміну ядерної концентрації і активності ізотопів паливної композиції в процесі опромінення і витримки. Представлено описание разработанной авторами базы данных и клиентской программы, предназначенных для хранения, обработки и извлечения ядерных констант, используемых при расчетах динамики изменения изотопного состава ядерного топлива. На основе созданной базы данных была разработана комплексная программа, позволяющая рассчитывать изменение ядерной концентрации и активности изотопов топливной композиции в процессе облучения и выдержки.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/147309
citation_txt Nuclear constants database for fuel isotope change estimation / A.G. Golovkina, A.D. Loskutova, D.A. Ovsyannikov // Вопросы атомной науки и техники. — 2018. — № 3. — С. 159-162. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT golovkinaag nuclearconstantsdatabaseforfuelisotopechangeestimation
AT loskutovaad nuclearconstantsdatabaseforfuelisotopechangeestimation
AT ovsyannikovda nuclearconstantsdatabaseforfuelisotopechangeestimation
AT golovkinaag bazadanihâdernihkonstantdlâocínkizmíniízotopnogoskladupaliva
AT loskutovaad bazadanihâdernihkonstantdlâocínkizmíniízotopnogoskladupaliva
AT ovsyannikovda bazadanihâdernihkonstantdlâocínkizmíniízotopnogoskladupaliva
AT golovkinaag bazadannyhâdernyhkonstantdlâocenkiizmereniâizotopnogosostavatopliva
AT loskutovaad bazadannyhâdernyhkonstantdlâocenkiizmereniâizotopnogosostavatopliva
AT ovsyannikovda bazadannyhâdernyhkonstantdlâocenkiizmereniâizotopnogosostavatopliva
first_indexed 2025-11-24T21:44:02Z
last_indexed 2025-11-24T21:44:02Z
_version_ 1850498435289972736
fulltext ISSN 1562-6016. ВАНТ. 2018. №3(115) 159 NUCLEAR CONSTANTS DATABASE FOR FUEL ISOTOPE CHANGE ESTIMATION A.G. Golovkina, A.D. Loskutova, D.A. Ovsyannikov Saint-Petersburg State University, Saint-Petersburg, Russia E-mail: а.golovkina@spbu.ru; st040281@student.spbu.ru; d.a.ovsyannikov@spbu.ru Description of database and client program developed by the authors and designed to store, process and extract nuclear constants used in calculations of nuclear fuel isotope changes is presented. On the basis of the designed da- tabase, a comprehensive program was developed. The program allows calculating the change in nuclear concentra- tion and activity of fuel isotopes during irradiation and exposure. PACS: 29.87.+g, 28.41.Kw, 28.41.Ak INTRODUCTION One of the most important aspects of nuclear power is the control of the state and changes in the isotopic composition of nuclear fuel. At present, the assessment of the fuel state is required in justifying the safety of nuclear power plants, marine facilities, as well as SNF (spent nuclear fuel) storages [1]. During this process it is necessary to take into account many factors: fuel type, reactor core composition, heat power, fuel recharging regime and so on, which become even more crucial in modeling of long-lived radioactive waste transmutation [2 - 4]. Effective transmutation, in turn, is impossible without preliminary optimization [5], aimed at deter- mining the initial fuel loading, moments of fuel recharg- ing and the reactor control mode. The existing nowa- days commercial programs (for example, ORIGEN [6], etc.) allow to determine the concentrations change of fuel isotopes in variant calculations with a sufficiently high accuracy, however they are not designed for solv- ing optimization problems. The purpose of this work is to develop a software package and nuclear constants database for isotope fuel change estimating, and which, in particular, can solve the optimization problem for transmutation process in various facilities. 1. FUEL ISOTOPE CHANGE The time variation in atomic number density (Ni) of a target nuclide (i) can be expressed as the following differential equation [7]:   ,ik a i l lil ik x k x kik x ij jjij i NF NgNf dt dN            (1) where the first term on the right-hand side is the produc- tion rate of nuclide i due to radioactive decay of another nuclide j on the burnup chain. j is the decay constant of nuclide j and ijf  is the probability of decay to nuclide i. The second term is the production rate of nu- clide i in the nuclear reaction x of another nuclide k. ik xg  is the probability of transmutation into nuclide i for nuclear reaction x of nuclide k. The third term is for the production of FPs. lF is the fission rate of heavy nuclide l and il is the yield fraction of nuclide i for the fission reaction. The last term is the loss rate of nu- clide i due to radioactive decay and absorption reac- tions,  k x  is defined by the following relation: . 1 )()()()( max min    n i iEiEiEk x E E dEEEk x k x  (2) Here )( iE – neutron flux, normalized to the reactor heat power. Neutron flux is calculated via solving the neutron transport equation in the lattice in multi-group diffusion approximation using the program code MDSR [8]. The matrix of the system (1) (transition matrix) is formed on the basis of the so-called burnup chain, both for actinides and fission products (an example is shown in Fig. 1). Fig. 1. An example burnup chain of heavy metals [7] Using equation (1), it is possible to calculate both the isotope change, the quantity of fission products and actinides during the reactor operation and at the time of reactor shutdown, as well as spent fuel isotope evolution (in this case 0 k x and 0lF ). Applying (1) to all nuclides including fission prod- ucts on the burnup chain gives simultaneous differential equations (burnup equations) corresponding to the num- ber of considered nuclides. In view of the transition ma- trix structure ways to solve the burnup equations (1) include analytical Bateman method [9] and the matrix exponential method [10]. 2. EVALUATED NUCLEAR DATA FILES Group nuclear constants )( iEk x in (2), as well as coefficients, characterizing radioactive transitions in (1) are the public data, stored in so called evaluated nuclear data files which includes cross sections uniquely- determined in the whole range of neutron energy on the basis of fragmentally measured and/or theoretically cal- mailto:st040281@student.spbu.ru ISSN 1562-6016. ВАНТ. 2018. №3(115) 160 culated parameters, radioactive decays etc. of more than 400 nuclides [7, 11]. The most used evaluated nuclear data files are JENDL [12], ENDF/B [13], JEFF [14]. The evaluated nuclear data from anywhere in the world are described and stored in the same way in 80- column text format that provides information in a block structure. The format has been changed according to advances in nuclear data and the current latest format is called ENDF-6 [15]. The ideology of evaluated nuclear data files for- mation was formed at a time when the possibilities of computer technology were significantly limited, and the reliability of its work left much to be desired. Therefore, a number of principles have been implemented in these files format, that now appear as something of an ata- vism. A fragment of the ENDF-6 file is shown in Fig. 2. As can be seen from the figure, working with such files is quite difficult. Fig. 2. Example of 235 U fission cross section stored in ENDF/B-VII.1 (Right bottom figure: plot of the cross section) [16] 3. NUCLEAR CONSTANTS DATABASE For the convenient and universal use of nuclear data, a relational database (under management of MS SQL Server) and associated client application (MS C #) (Fig. 3) were designed. Fig. 3. Modes of database communication with client and calculation programs Client application operates in two modes: to write and read data. In the data writing mode, text files for all isotopes of the selected library are downloaded in the ENDF-6 format from the IAEA nuclear data section server [16]. After then they are read and the required data are extracted followed by the subsequent recording to the database. It should be noted that the database structure dynamically expands during data downloading for each subsequent isotope. In read mode, the client program executes a request to extract data on the reac- tions cross sections, radioactive decays, etc., required to perform calculations. After then it transforms data to the form used by calculation program. The communication between database and client application is carried out using stored procedures. Fig. 4 shows a fragment of the nuclear constants da- tabase structure. Fig. 4. ER-model of nuclear constants database The special feature of the developed client program is that it can work independently from the calculation code, as a stand-alone software product designed to visualize and display data in a user-friendly form (Fig. 5). Fig. 5. User interface of the client program for communication with the database The main task of the client program is to restore the burnup chains (see Fig. 1) of considered isotopes in or- der to form the transition matrix of the system (1), as well as to select the most significant isotopes in the con- text of the problem being solved for the dimension re- duction. The choice depends on the objectives of trans- mutation (fission products or actinides), radiotoxicity and lifetime of isotopes, and also the campaign period. 4. DEPLETION AND BUILDUP TESTS Using the bundle of the developed nuclear constants database and the client program, as well as the calcula- tion module for solving the system (1), the processes of fuel depletion and fission products buildup for the re- search reactor U-3 [17] were simulated. The changes in the isotopes total activity in the U-3 core after operation in the following regimes are analyzed: ISSN 1562-6016. ВАНТ. 2018. №3(115) 161  Regime 1. Heat power (W) = 50 kW, operation time (Tk) 100 hours (energy-producing 5 МWhour);  Regime 2. Heat power (W) = 15 kW, operation time (Tk) 1000 hours (energy-producing 15 МWhour);  Regime 3. Storing. Dependences of the reactor U-3 core activity in dif- ferent operation regimes on the time after reactor shut- down are shown in Fig. 6. Fig. 6. Dependences of the reactor U-3 core activity on the time after reactor shutdown Also, isotopes which give the largest contribution to the total activity of the fuel at different times were iden- tified. Table 1 shows data on the most significant iso- topes in the reactor first operating mode immediately after the reactor shutdown, and Table 2  after 10 years of exposure. Table 1 Isotopes that determine the activity of the reactor core after operation in mode 1, immediately after reactor shutdown t = 0 years Isotope name Activity [Ci] % from the total reactor core activity U-239 3830 3.48 I-134 3300 3.00 Np-239 3230 2.93 Cs-138 2810 2.55 I-133 2760 2.51 Ba-139 2710 2,46 Te-134 2690 2.44 Xe-135 2680 2.43 I-135 2680 2.43 Y-92 2560 2.33 Sr-91 2530 2.30 La-142 2510 2.28 La-141 2490 2.26 Sr-92 2470 2.24 Nb-97 2390 2.17 Zr-97 2370 2.15 Y-94 2350 2.13 Nb-97M 2250 2.04 Ce-143 2230 2.03 Tc-101 2120 1.93 Xe-138 2040 1.85 Ba-141 2010 1.83 Y-95 1920 1.74 Lа-143 1920 1.74 Table 2 Isotopes that determine the activity of the reactor core after operation in mode 1 10 years after the reactor shutdown t = 10 years Isotope name Activity [Ci] % from the total reactor core activity Cs-137 16.7 25.63 Ba-137M 15.8 24.25 Sr-90 15.6 23.94 Y-90 15.6 23.94 The obtained results are consistent with the meas- urements results. This fact confirms the correctness of the developed software. CONCLUSIONS Description of the nuclear constants database and a client application linking it to the calculation program are presented in this paper. Filling in the database comes from the updating public archive of the IAEA nuclear data section, which guarantees the reliability of the data used in the calculations. A special feature of the devel- oped software is the possibility of reducing the burnup chains and the number of considered isotopes. This fea- ture makes it possible to use the complex for optimiza- tion. The work of the software package and database is illustrated in the calculation tests for the research reactor U-3. The obtained results are consistent with the meas- urements. REFERENCES 1. А.К. Kruglov, А.P. Rudik. Artificial isotopes and methods for calculating their formation in nuclear reactors. Мoscow: “Atomizdat”, 1977, 168 p. 2. A.G. Golovkina, I.V. Kudinovich, D.A. Ovsyannikov. Power of ADS with low-energy accelerator and fissionable target // Problems of Atomic Science and Technology. Series “Plasma Elec- tronics and New Methods of Acceleration”. 2013, № 4, p. 328-332. 3. A.G. Golovkina, A.A. Bogdanov, I.V. Kudinovich, D.A. Ovsyannikov. Power plant based on subcritical reactor and proton Linac // Proceedings of the 5th International Particle Accelerator Conference. 2014, p. 2224-2226. 4. A.G. Golovkina, I.V. Kudinovich, Yu.A. Svistunov. The problem of ADS power-level maintenance // Cybernetics and Physics. 2016, v. 5, № 2, p. 52-58. 5. A.G. Golovkina, I.V. Kudinovich. Characteristics optimization for accelerator driven cascade subcriti- cal reactor // Proceedings of Constructive Non- smooth Analysis and Related Topics (Dedicated to the Memory of V.F. Demyanov). 2017, art. № 7973960. 6. W.A. Wieselquist. The SCALE 6.2 ORIGEN API for high performance depletion. US Department of en- ergy: CASL-U-2015-0165-000, 2015. 7. Y. Oka. Nuclear Reactor Design. Chapter 2: Nuclear reactor calculations. Springer, 2014, p. 49-126. 8. А.G. Golovkina, I.V. Kudinovich. Program for Mul- ti-group Diffusion calculation of Subcritical Reactor ISSN 1562-6016. ВАНТ. 2018. №3(115) 162 neutron-physical characteristics (MDSR) // Russian Registration Certificate № 2017618770. 9. K. Tasaka. DCHAIN: code for analysis of build-up and decay of nuclides. Japan Atomic Energy Re- search Institute, JAERI 1250, 1997. 10. A.G. Croff. ORIGEN2: a versatile computer code for calculating the nuclide compositions and charac- teristics of nuclear materials // Nuclear Technology. 1983, v. 62, № 3, p. 335-352. 11. V.V. Kolesov, M.Yu. Ternovykh, G.V. Tikhomirov. Nuclear data files and their use in neutron-physical calculations. Tutorial. Moscow: MEPhI, 2014, 68 p. 12. K. Shibata et al. JENDL-4.0: a new library for nu- clear science and engineering // Journal of Nuclear Science and Technology. 2011, v. 48, № 1, p. 1-30. 13. M.B. Chadwick et al. ENDF/B-VII.1 nuclear data for science and technology: cross sections, covari- ances, fission product yields and decay data // Nu- clear Data Sheets. 2011, v. 112, № 12, p. 2887- 2996. 14. A. Koning et al. The JEFF-3.1 nuclear data library. JEFF report 21, NEA Data Bank, 2006. 15. M. Herman, A. Trkov. ENDF-6 Fomats Manual. Report BNL-90365-2009. National Nuclear Data Center, Brookhaven National Laboratory, 2009. 16. ENDF-Archive IAEA Nuclear Data Services. https://www-nds.iaea.org/public/download-endf/. 17. V.P. Struev et al. External neutron source for re- search reactor based on linear accelerator and beryl- lium target // Proceedings of the 5th International Particle Accelerator Conference. 2014, p. 754-756. Article received 27.02.2018 БАЗА ДАННЫХ ЯДЕРНЫХ КОНСТАНТ ДЛЯ ОЦЕНКИ ИЗМЕНЕНИЯ ИЗОТОПНОГО СОСТАВА ТОПЛИВА А.Г. Головкина, А.Д. Лоскутова, Д.А. Овсянников Представлено описание разработанной авторами базы данных и клиентской программы, предназначен- ных для хранения, обработки и извлечения ядерных констант, используемых при расчетах динамики изме- нения изотопного состава ядерного топлива. На основе созданной базы данных была разработана комплекс- ная программа, позволяющая рассчитывать изменение ядерной концентрации и активности изотопов топ- ливной композиции в процессе облучения и выдержки. БАЗА ДАНИХ ЯДЕРНИХ КОНСТАНТ ДЛЯ ОЦІНКИ ЗМІНИ ІЗОТОПНОГО СКЛАДУ ПАЛИВА А.Г. Головкіна, А.Д. Лоскутова, Д.А. Овсянников Представлено опис розробленої авторами бази даних і клієнтської програми, призначених для зберіган- ня, обробки та вилучення ядерних констант, використовуваних при розрахунках динаміки зміни ізотопного складу ядерного палива. На основі створеної бази даних була розроблена комплексна програма, що дозволяє розраховувати зміну ядерної концентрації і активності ізотопів паливної композиції в процесі опромінення і витримки.