Nuclear constants database for fuel isotope change estimation
Description of database and client program developed by the authors and designed to store, process and extract nuclear constants used in calculations of nuclear fuel isotope changes is presented. On the basis of the designed database, a comprehensive program was developed. The program allows calcul...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2018 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/147309 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Nuclear constants database for fuel isotope change estimation / A.G. Golovkina, A.D. Loskutova, D.A. Ovsyannikov // Вопросы атомной науки и техники. — 2018. — № 3. — С. 159-162. — Бібліогр.: 17 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147309 |
|---|---|
| record_format |
dspace |
| spelling |
Golovkina, A.G. Loskutova, A.D. Ovsyannikov, D.A. 2019-02-14T12:02:23Z 2019-02-14T12:02:23Z 2018 Nuclear constants database for fuel isotope change estimation / A.G. Golovkina, A.D. Loskutova, D.A. Ovsyannikov // Вопросы атомной науки и техники. — 2018. — № 3. — С. 159-162. — Бібліогр.: 17 назв. — англ. 1562-6016 PACS: 29.87.+g, 28.41.Kw, 28.41.Ak https://nasplib.isofts.kiev.ua/handle/123456789/147309 Description of database and client program developed by the authors and designed to store, process and extract nuclear constants used in calculations of nuclear fuel isotope changes is presented. On the basis of the designed database, a comprehensive program was developed. The program allows calculating the change in nuclear concentration and activity of fuel isotopes during irradiation and exposure. Представлено опис розробленої авторами бази даних і клієнтської програми, призначених для зберігання, обробки та вилучення ядерних констант, використовуваних при розрахунках динаміки зміни ізотопного складу ядерного палива. На основі створеної бази даних була розроблена комплексна програма, що дозволяє розраховувати зміну ядерної концентрації і активності ізотопів паливної композиції в процесі опромінення і витримки. Представлено описание разработанной авторами базы данных и клиентской программы, предназначенных для хранения, обработки и извлечения ядерных констант, используемых при расчетах динамики изменения изотопного состава ядерного топлива. На основе созданной базы данных была разработана комплексная программа, позволяющая рассчитывать изменение ядерной концентрации и активности изотопов топливной композиции в процессе облучения и выдержки. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Применение ядерных методов Nuclear constants database for fuel isotope change estimation База даних ядерних констант для оцінки зміни ізотопного складу палива База данных ядерных констант для оценки измерения изотопного состава топлива Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Nuclear constants database for fuel isotope change estimation |
| spellingShingle |
Nuclear constants database for fuel isotope change estimation Golovkina, A.G. Loskutova, A.D. Ovsyannikov, D.A. Применение ядерных методов |
| title_short |
Nuclear constants database for fuel isotope change estimation |
| title_full |
Nuclear constants database for fuel isotope change estimation |
| title_fullStr |
Nuclear constants database for fuel isotope change estimation |
| title_full_unstemmed |
Nuclear constants database for fuel isotope change estimation |
| title_sort |
nuclear constants database for fuel isotope change estimation |
| author |
Golovkina, A.G. Loskutova, A.D. Ovsyannikov, D.A. |
| author_facet |
Golovkina, A.G. Loskutova, A.D. Ovsyannikov, D.A. |
| topic |
Применение ядерных методов |
| topic_facet |
Применение ядерных методов |
| publishDate |
2018 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
База даних ядерних констант для оцінки зміни ізотопного складу палива База данных ядерных констант для оценки измерения изотопного состава топлива |
| description |
Description of database and client program developed by the authors and designed to store, process and extract
nuclear constants used in calculations of nuclear fuel isotope changes is presented. On the basis of the designed database, a comprehensive program was developed. The program allows calculating the change in nuclear concentration and activity of fuel isotopes during irradiation and exposure.
Представлено опис розробленої авторами бази даних і клієнтської програми, призначених для зберігання, обробки та вилучення ядерних констант, використовуваних при розрахунках динаміки зміни ізотопного
складу ядерного палива. На основі створеної бази даних була розроблена комплексна програма, що дозволяє
розраховувати зміну ядерної концентрації і активності ізотопів паливної композиції в процесі опромінення і
витримки.
Представлено описание разработанной авторами базы данных и клиентской программы, предназначенных для хранения, обработки и извлечения ядерных констант, используемых при расчетах динамики изменения изотопного состава ядерного топлива. На основе созданной базы данных была разработана комплексная программа, позволяющая рассчитывать изменение ядерной концентрации и активности изотопов топливной композиции в процессе облучения и выдержки.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147309 |
| citation_txt |
Nuclear constants database for fuel isotope change estimation / A.G. Golovkina, A.D. Loskutova, D.A. Ovsyannikov // Вопросы атомной науки и техники. — 2018. — № 3. — С. 159-162. — Бібліогр.: 17 назв. — англ. |
| work_keys_str_mv |
AT golovkinaag nuclearconstantsdatabaseforfuelisotopechangeestimation AT loskutovaad nuclearconstantsdatabaseforfuelisotopechangeestimation AT ovsyannikovda nuclearconstantsdatabaseforfuelisotopechangeestimation AT golovkinaag bazadanihâdernihkonstantdlâocínkizmíniízotopnogoskladupaliva AT loskutovaad bazadanihâdernihkonstantdlâocínkizmíniízotopnogoskladupaliva AT ovsyannikovda bazadanihâdernihkonstantdlâocínkizmíniízotopnogoskladupaliva AT golovkinaag bazadannyhâdernyhkonstantdlâocenkiizmereniâizotopnogosostavatopliva AT loskutovaad bazadannyhâdernyhkonstantdlâocenkiizmereniâizotopnogosostavatopliva AT ovsyannikovda bazadannyhâdernyhkonstantdlâocenkiizmereniâizotopnogosostavatopliva |
| first_indexed |
2025-11-24T21:44:02Z |
| last_indexed |
2025-11-24T21:44:02Z |
| _version_ |
1850498435289972736 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2018. №3(115) 159
NUCLEAR CONSTANTS DATABASE
FOR FUEL ISOTOPE CHANGE ESTIMATION
A.G. Golovkina, A.D. Loskutova, D.A. Ovsyannikov
Saint-Petersburg State University, Saint-Petersburg, Russia
E-mail: а.golovkina@spbu.ru; st040281@student.spbu.ru; d.a.ovsyannikov@spbu.ru
Description of database and client program developed by the authors and designed to store, process and extract
nuclear constants used in calculations of nuclear fuel isotope changes is presented. On the basis of the designed da-
tabase, a comprehensive program was developed. The program allows calculating the change in nuclear concentra-
tion and activity of fuel isotopes during irradiation and exposure.
PACS: 29.87.+g, 28.41.Kw, 28.41.Ak
INTRODUCTION
One of the most important aspects of nuclear power
is the control of the state and changes in the isotopic
composition of nuclear fuel. At present, the assessment
of the fuel state is required in justifying the safety of
nuclear power plants, marine facilities, as well as SNF
(spent nuclear fuel) storages [1]. During this process it
is necessary to take into account many factors: fuel type,
reactor core composition, heat power, fuel recharging
regime and so on, which become even more crucial in
modeling of long-lived radioactive waste transmutation
[2 - 4]. Effective transmutation, in turn, is impossible
without preliminary optimization [5], aimed at deter-
mining the initial fuel loading, moments of fuel recharg-
ing and the reactor control mode. The existing nowa-
days commercial programs (for example, ORIGEN [6],
etc.) allow to determine the concentrations change of
fuel isotopes in variant calculations with a sufficiently
high accuracy, however they are not designed for solv-
ing optimization problems. The purpose of this work is
to develop a software package and nuclear constants
database for isotope fuel change estimating, and which,
in particular, can solve the optimization problem for
transmutation process in various facilities.
1. FUEL ISOTOPE CHANGE
The time variation in atomic number density (Ni) of
a target nuclide (i) can be expressed as the following
differential equation [7]:
,ik
a
i
l
lil
ik x
k
x
kik
x
ij
jjij
i
NF
NgNf
dt
dN
(1)
where the first term on the right-hand side is the produc-
tion rate of nuclide i due to radioactive decay of another
nuclide j on the burnup chain.
j is the decay constant
of nuclide j and
ijf is the probability of decay to
nuclide i. The second term is the production rate of nu-
clide i in the nuclear reaction x of another nuclide k.
ik
xg is the probability of transmutation into nuclide i
for nuclear reaction x of nuclide k. The third term is for
the production of FPs. lF is the fission rate of heavy
nuclide l and
il is the yield fraction of nuclide i for
the fission reaction. The last term is the loss rate of nu-
clide i due to radioactive decay and absorption reac-
tions, k
x is defined by the following relation:
.
1
)()()()(
max
min
n
i
iEiEiEk
x
E
E
dEEEk
x
k
x (2)
Here )( iE – neutron flux, normalized to the reactor
heat power. Neutron flux is calculated via solving the
neutron transport equation in the lattice in multi-group
diffusion approximation using the program code MDSR
[8].
The matrix of the system (1) (transition matrix) is
formed on the basis of the so-called burnup chain, both
for actinides and fission products (an example is shown
in Fig. 1).
Fig. 1. An example burnup chain of heavy metals [7]
Using equation (1), it is possible to calculate both
the isotope change, the quantity of fission products and
actinides during the reactor operation and at the time of
reactor shutdown, as well as spent fuel isotope evolution
(in this case 0 k
x and 0lF ).
Applying (1) to all nuclides including fission prod-
ucts on the burnup chain gives simultaneous differential
equations (burnup equations) corresponding to the num-
ber of considered nuclides. In view of the transition ma-
trix structure ways to solve the burnup equations (1)
include analytical Bateman method [9] and the matrix
exponential method [10].
2. EVALUATED NUCLEAR DATA FILES
Group nuclear constants )( iEk
x in (2), as well as
coefficients, characterizing radioactive transitions in (1)
are the public data, stored in so called evaluated nuclear
data files which includes cross sections uniquely-
determined in the whole range of neutron energy on the
basis of fragmentally measured and/or theoretically cal-
mailto:st040281@student.spbu.ru
ISSN 1562-6016. ВАНТ. 2018. №3(115) 160
culated parameters, radioactive decays etc. of more than
400 nuclides [7, 11]. The most used evaluated nuclear
data files are JENDL [12], ENDF/B [13], JEFF [14].
The evaluated nuclear data from anywhere in the
world are described and stored in the same way in 80-
column text format that provides information in a block
structure. The format has been changed according to
advances in nuclear data and the current latest format is
called ENDF-6 [15].
The ideology of evaluated nuclear data files for-
mation was formed at a time when the possibilities of
computer technology were significantly limited, and the
reliability of its work left much to be desired. Therefore,
a number of principles have been implemented in these
files format, that now appear as something of an ata-
vism. A fragment of the ENDF-6 file is shown in Fig. 2.
As can be seen from the figure, working with such files
is quite difficult.
Fig. 2. Example of
235
U fission cross section stored
in ENDF/B-VII.1 (Right bottom figure:
plot of the cross section) [16]
3. NUCLEAR CONSTANTS DATABASE
For the convenient and universal use of nuclear data,
a relational database (under management of MS SQL
Server) and associated client application (MS C #)
(Fig. 3) were designed.
Fig. 3. Modes of database communication
with client and calculation programs
Client application operates in two modes: to write
and read data. In the data writing mode, text files for all
isotopes of the selected library are downloaded in the
ENDF-6 format from the IAEA nuclear data section
server [16]. After then they are read and the required
data are extracted followed by the subsequent recording
to the database. It should be noted that the database
structure dynamically expands during data downloading
for each subsequent isotope. In read mode, the client
program executes a request to extract data on the reac-
tions cross sections, radioactive decays, etc., required to
perform calculations. After then it transforms data to the
form used by calculation program. The communication
between database and client application is carried out
using stored procedures.
Fig. 4 shows a fragment of the nuclear constants da-
tabase structure.
Fig. 4. ER-model of nuclear constants database
The special feature of the developed client program is
that it can work independently from the calculation code,
as a stand-alone software product designed to visualize
and display data in a user-friendly form (Fig. 5).
Fig. 5. User interface of the client program
for communication with the database
The main task of the client program is to restore the
burnup chains (see Fig. 1) of considered isotopes in or-
der to form the transition matrix of the system (1), as
well as to select the most significant isotopes in the con-
text of the problem being solved for the dimension re-
duction. The choice depends on the objectives of trans-
mutation (fission products or actinides), radiotoxicity
and lifetime of isotopes, and also the campaign period.
4. DEPLETION AND BUILDUP TESTS
Using the bundle of the developed nuclear constants
database and the client program, as well as the calcula-
tion module for solving the system (1), the processes of
fuel depletion and fission products buildup for the re-
search reactor U-3 [17] were simulated. The changes in
the isotopes total activity in the U-3 core after operation
in the following regimes are analyzed:
ISSN 1562-6016. ВАНТ. 2018. №3(115) 161
Regime 1. Heat power (W) = 50 kW, operation time
(Tk) 100 hours (energy-producing 5 МWhour);
Regime 2. Heat power (W) = 15 kW, operation time
(Tk) 1000 hours (energy-producing 15 МWhour);
Regime 3. Storing.
Dependences of the reactor U-3 core activity in dif-
ferent operation regimes on the time after reactor shut-
down are shown in Fig. 6.
Fig. 6. Dependences of the reactor U-3 core activity
on the time after reactor shutdown
Also, isotopes which give the largest contribution to
the total activity of the fuel at different times were iden-
tified. Table 1 shows data on the most significant iso-
topes in the reactor first operating mode immediately
after the reactor shutdown, and Table 2 after 10 years
of exposure.
Table 1
Isotopes that determine the activity of the reactor core
after operation in mode 1, immediately after reactor
shutdown
t = 0 years
Isotope name Activity
[Ci]
% from the total
reactor core activity
U-239 3830 3.48
I-134 3300 3.00
Np-239 3230 2.93
Cs-138 2810 2.55
I-133 2760 2.51
Ba-139 2710 2,46
Te-134 2690 2.44
Xe-135 2680 2.43
I-135 2680 2.43
Y-92 2560 2.33
Sr-91 2530 2.30
La-142 2510 2.28
La-141 2490 2.26
Sr-92 2470 2.24
Nb-97 2390 2.17
Zr-97 2370 2.15
Y-94 2350 2.13
Nb-97M 2250 2.04
Ce-143 2230 2.03
Tc-101 2120 1.93
Xe-138 2040 1.85
Ba-141 2010 1.83
Y-95 1920 1.74
Lа-143 1920 1.74
Table 2
Isotopes that determine the activity of the reactor core
after operation in mode 1 10 years after the reactor
shutdown
t = 10 years
Isotope name
Activity
[Ci]
% from the total
reactor core
activity
Cs-137 16.7 25.63
Ba-137M 15.8 24.25
Sr-90 15.6 23.94
Y-90 15.6 23.94
The obtained results are consistent with the meas-
urements results. This fact confirms the correctness of
the developed software.
CONCLUSIONS
Description of the nuclear constants database and a
client application linking it to the calculation program
are presented in this paper. Filling in the database comes
from the updating public archive of the IAEA nuclear
data section, which guarantees the reliability of the data
used in the calculations. A special feature of the devel-
oped software is the possibility of reducing the burnup
chains and the number of considered isotopes. This fea-
ture makes it possible to use the complex for optimiza-
tion. The work of the software package and database is
illustrated in the calculation tests for the research reactor
U-3. The obtained results are consistent with the meas-
urements.
REFERENCES
1. А.К. Kruglov, А.P. Rudik. Artificial isotopes and
methods for calculating their formation in nuclear
reactors. Мoscow: “Atomizdat”, 1977, 168 p.
2. A.G. Golovkina, I.V. Kudinovich,
D.A. Ovsyannikov. Power of ADS with low-energy
accelerator and fissionable target // Problems of
Atomic Science and Technology. Series “Plasma Elec-
tronics and New Methods of Acceleration”. 2013, №
4, p. 328-332.
3. A.G. Golovkina, A.A. Bogdanov, I.V. Kudinovich,
D.A. Ovsyannikov. Power plant based on subcritical
reactor and proton Linac // Proceedings of the 5th
International Particle Accelerator Conference.
2014, p. 2224-2226.
4. A.G. Golovkina, I.V. Kudinovich, Yu.A. Svistunov.
The problem of ADS power-level maintenance //
Cybernetics and Physics. 2016, v. 5, № 2, p. 52-58.
5. A.G. Golovkina, I.V. Kudinovich. Characteristics
optimization for accelerator driven cascade subcriti-
cal reactor // Proceedings of Constructive Non-
smooth Analysis and Related Topics (Dedicated to
the Memory of V.F. Demyanov). 2017, art.
№ 7973960.
6. W.A. Wieselquist. The SCALE 6.2 ORIGEN API for
high performance depletion. US Department of en-
ergy: CASL-U-2015-0165-000, 2015.
7. Y. Oka. Nuclear Reactor Design. Chapter 2: Nuclear
reactor calculations. Springer, 2014, p. 49-126.
8. А.G. Golovkina, I.V. Kudinovich. Program for Mul-
ti-group Diffusion calculation of Subcritical Reactor
ISSN 1562-6016. ВАНТ. 2018. №3(115) 162
neutron-physical characteristics (MDSR) // Russian
Registration Certificate № 2017618770.
9. K. Tasaka. DCHAIN: code for analysis of build-up
and decay of nuclides. Japan Atomic Energy Re-
search Institute, JAERI 1250, 1997.
10. A.G. Croff. ORIGEN2: a versatile computer code
for calculating the nuclide compositions and charac-
teristics of nuclear materials // Nuclear Technology.
1983, v. 62, № 3, p. 335-352.
11. V.V. Kolesov, M.Yu. Ternovykh, G.V. Tikhomirov.
Nuclear data files and their use in neutron-physical
calculations. Tutorial. Moscow: MEPhI, 2014, 68 p.
12. K. Shibata et al. JENDL-4.0: a new library for nu-
clear science and engineering // Journal of Nuclear
Science and Technology. 2011, v. 48, № 1, p. 1-30.
13. M.B. Chadwick et al. ENDF/B-VII.1 nuclear data
for science and technology: cross sections, covari-
ances, fission product yields and decay data // Nu-
clear Data Sheets. 2011, v. 112, № 12, p. 2887-
2996.
14. A. Koning et al. The JEFF-3.1 nuclear data library.
JEFF report 21, NEA Data Bank, 2006.
15. M. Herman, A. Trkov. ENDF-6 Fomats Manual.
Report BNL-90365-2009. National Nuclear Data
Center, Brookhaven National Laboratory, 2009.
16. ENDF-Archive IAEA Nuclear Data Services.
https://www-nds.iaea.org/public/download-endf/.
17. V.P. Struev et al. External neutron source for re-
search reactor based on linear accelerator and beryl-
lium target // Proceedings of the 5th International
Particle Accelerator Conference. 2014, p. 754-756.
Article received 27.02.2018
БАЗА ДАННЫХ ЯДЕРНЫХ КОНСТАНТ ДЛЯ ОЦЕНКИ ИЗМЕНЕНИЯ ИЗОТОПНОГО СОСТАВА
ТОПЛИВА
А.Г. Головкина, А.Д. Лоскутова, Д.А. Овсянников
Представлено описание разработанной авторами базы данных и клиентской программы, предназначен-
ных для хранения, обработки и извлечения ядерных констант, используемых при расчетах динамики изме-
нения изотопного состава ядерного топлива. На основе созданной базы данных была разработана комплекс-
ная программа, позволяющая рассчитывать изменение ядерной концентрации и активности изотопов топ-
ливной композиции в процессе облучения и выдержки.
БАЗА ДАНИХ ЯДЕРНИХ КОНСТАНТ ДЛЯ ОЦІНКИ ЗМІНИ ІЗОТОПНОГО СКЛАДУ ПАЛИВА
А.Г. Головкіна, А.Д. Лоскутова, Д.А. Овсянников
Представлено опис розробленої авторами бази даних і клієнтської програми, призначених для зберіган-
ня, обробки та вилучення ядерних констант, використовуваних при розрахунках динаміки зміни ізотопного
складу ядерного палива. На основі створеної бази даних була розроблена комплексна програма, що дозволяє
розраховувати зміну ядерної концентрації і активності ізотопів паливної композиції в процесі опромінення і
витримки.
|