Тhermodesorbtion from construction materials irradiated by ions of helium on a linear accelerator

On a linear accelerator samples of alloys of zirconium, molybdenum and stainless steels were irradiated by beams of helium ions with an energy of 0.12…4 MeV. The results of thermal desorption of helium from irradiated samples are reported in the temperature range 20…1500°С. The results of the solu...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2018
Автори: Anokhin, R.А., Dubniuk, S.M., Zaitsev, B.V., Pavlii, К.V., Reshetnikov, V.M., Shevchenko, O.S.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147313
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Тhermodesorbtion from construction materials irradiated by ions of helium on a linear accelerator / R.А. Anokhin, S.M. Dubniuk, B.V. Zaitsev, К.V. Pavlii, V.M. Reshetnikov, O.S. Shevchenko // Вопросы атомной науки и техники. — 2018. — № 3. — С. 178-182. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147313
record_format dspace
spelling Anokhin, R.А.
Dubniuk, S.M.
Zaitsev, B.V.
Pavlii, К.V.
Reshetnikov, V.M.
Shevchenko, O.S.
2019-02-14T12:07:58Z
2019-02-14T12:07:58Z
2018
Тhermodesorbtion from construction materials irradiated by ions of helium on a linear accelerator / R.А. Anokhin, S.M. Dubniuk, B.V. Zaitsev, К.V. Pavlii, V.M. Reshetnikov, O.S. Shevchenko // Вопросы атомной науки и техники. — 2018. — № 3. — С. 178-182. — Бібліогр.: 12 назв. — англ.
1562-6016
PACS: 29.27.-a
https://nasplib.isofts.kiev.ua/handle/123456789/147313
On a linear accelerator samples of alloys of zirconium, molybdenum and stainless steels were irradiated by beams of helium ions with an energy of 0.12…4 MeV. The results of thermal desorption of helium from irradiated samples are reported in the temperature range 20…1500°С. The results of the solution of the nonstationary equation of diffusion are presented with allowance for helium deposition profiles and damageability over the thickness of the sample. The determining factor in the formation of the second peak of thermal desorption is the shift in the maximum of the damage profile relative to the maximum profile of helium deposition in irradiated samples.
На лінійному прискорювачі були опромінені зразки сплавів цирконію, молібдену і нержавіючих сталей пучками іонів гелію з енергією 0,12…4 МеВ. Наведено результати термодесорбції гелію з опромінених зразків у діапазоні температур 20…1500°С. Представлені результати рішення нестаціонарного рівняння дифузії з урахуванням профілів залягання гелію і пошкоджуваності по товщині зразка. Визначальним фактором виникнення другого піку термодесорбції є зрушення максимуму профілю пошкоджуваності щодо максимуму профілю залягання гелію в опромінених зразках
На линейном ускорителе были облучены образцы сплавов циркония, молибдена и нержавеющих сталей пучками ионов гелия с энергией 0,12…4 МэВ. Приведены результаты термодесорбции гелия из облученных образцов в диапазоне температур 20…1500°С. Представлены результаты решения нестационарного уравнения диффузии с учетом профилей залегания гелия и повреждаемости по толщине образца. Определяющим фактором образования второго пика термодесорбции является сдвиг максимума профиля повреждаемости относительно максимума профиля залегания гелия в облученных образцах.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Применение ускорителей в радиационных технологиях
Тhermodesorbtion from construction materials irradiated by ions of helium on a linear accelerator
Термодесорбція з конструкційних матеріалів, опромінених іонами гелію на лінійному прискорювачі
Термодесорбция из конструкционных материалов, облученных ионами гелия на линейном ускорителе
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Тhermodesorbtion from construction materials irradiated by ions of helium on a linear accelerator
spellingShingle Тhermodesorbtion from construction materials irradiated by ions of helium on a linear accelerator
Anokhin, R.А.
Dubniuk, S.M.
Zaitsev, B.V.
Pavlii, К.V.
Reshetnikov, V.M.
Shevchenko, O.S.
Применение ускорителей в радиационных технологиях
title_short Тhermodesorbtion from construction materials irradiated by ions of helium on a linear accelerator
title_full Тhermodesorbtion from construction materials irradiated by ions of helium on a linear accelerator
title_fullStr Тhermodesorbtion from construction materials irradiated by ions of helium on a linear accelerator
title_full_unstemmed Тhermodesorbtion from construction materials irradiated by ions of helium on a linear accelerator
title_sort тhermodesorbtion from construction materials irradiated by ions of helium on a linear accelerator
author Anokhin, R.А.
Dubniuk, S.M.
Zaitsev, B.V.
Pavlii, К.V.
Reshetnikov, V.M.
Shevchenko, O.S.
author_facet Anokhin, R.А.
Dubniuk, S.M.
Zaitsev, B.V.
Pavlii, К.V.
Reshetnikov, V.M.
Shevchenko, O.S.
topic Применение ускорителей в радиационных технологиях
topic_facet Применение ускорителей в радиационных технологиях
publishDate 2018
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Термодесорбція з конструкційних матеріалів, опромінених іонами гелію на лінійному прискорювачі
Термодесорбция из конструкционных материалов, облученных ионами гелия на линейном ускорителе
description On a linear accelerator samples of alloys of zirconium, molybdenum and stainless steels were irradiated by beams of helium ions with an energy of 0.12…4 MeV. The results of thermal desorption of helium from irradiated samples are reported in the temperature range 20…1500°С. The results of the solution of the nonstationary equation of diffusion are presented with allowance for helium deposition profiles and damageability over the thickness of the sample. The determining factor in the formation of the second peak of thermal desorption is the shift in the maximum of the damage profile relative to the maximum profile of helium deposition in irradiated samples. На лінійному прискорювачі були опромінені зразки сплавів цирконію, молібдену і нержавіючих сталей пучками іонів гелію з енергією 0,12…4 МеВ. Наведено результати термодесорбції гелію з опромінених зразків у діапазоні температур 20…1500°С. Представлені результати рішення нестаціонарного рівняння дифузії з урахуванням профілів залягання гелію і пошкоджуваності по товщині зразка. Визначальним фактором виникнення другого піку термодесорбції є зрушення максимуму профілю пошкоджуваності щодо максимуму профілю залягання гелію в опромінених зразках На линейном ускорителе были облучены образцы сплавов циркония, молибдена и нержавеющих сталей пучками ионов гелия с энергией 0,12…4 МэВ. Приведены результаты термодесорбции гелия из облученных образцов в диапазоне температур 20…1500°С. Представлены результаты решения нестационарного уравнения диффузии с учетом профилей залегания гелия и повреждаемости по толщине образца. Определяющим фактором образования второго пика термодесорбции является сдвиг максимума профиля повреждаемости относительно максимума профиля залегания гелия в облученных образцах.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/147313
citation_txt Тhermodesorbtion from construction materials irradiated by ions of helium on a linear accelerator / R.А. Anokhin, S.M. Dubniuk, B.V. Zaitsev, К.V. Pavlii, V.M. Reshetnikov, O.S. Shevchenko // Вопросы атомной науки и техники. — 2018. — № 3. — С. 178-182. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT anokhinra thermodesorbtionfromconstructionmaterialsirradiatedbyionsofheliumonalinearaccelerator
AT dubniuksm thermodesorbtionfromconstructionmaterialsirradiatedbyionsofheliumonalinearaccelerator
AT zaitsevbv thermodesorbtionfromconstructionmaterialsirradiatedbyionsofheliumonalinearaccelerator
AT pavliikv thermodesorbtionfromconstructionmaterialsirradiatedbyionsofheliumonalinearaccelerator
AT reshetnikovvm thermodesorbtionfromconstructionmaterialsirradiatedbyionsofheliumonalinearaccelerator
AT shevchenkoos thermodesorbtionfromconstructionmaterialsirradiatedbyionsofheliumonalinearaccelerator
AT anokhinra termodesorbcíâzkonstrukcíinihmateríalívopromínenihíonamigelíûnalíníinomupriskorûvačí
AT dubniuksm termodesorbcíâzkonstrukcíinihmateríalívopromínenihíonamigelíûnalíníinomupriskorûvačí
AT zaitsevbv termodesorbcíâzkonstrukcíinihmateríalívopromínenihíonamigelíûnalíníinomupriskorûvačí
AT pavliikv termodesorbcíâzkonstrukcíinihmateríalívopromínenihíonamigelíûnalíníinomupriskorûvačí
AT reshetnikovvm termodesorbcíâzkonstrukcíinihmateríalívopromínenihíonamigelíûnalíníinomupriskorûvačí
AT shevchenkoos termodesorbcíâzkonstrukcíinihmateríalívopromínenihíonamigelíûnalíníinomupriskorûvačí
AT anokhinra termodesorbciâizkonstrukcionnyhmaterialovoblučennyhionamigeliânalineinomuskoritele
AT dubniuksm termodesorbciâizkonstrukcionnyhmaterialovoblučennyhionamigeliânalineinomuskoritele
AT zaitsevbv termodesorbciâizkonstrukcionnyhmaterialovoblučennyhionamigeliânalineinomuskoritele
AT pavliikv termodesorbciâizkonstrukcionnyhmaterialovoblučennyhionamigeliânalineinomuskoritele
AT reshetnikovvm termodesorbciâizkonstrukcionnyhmaterialovoblučennyhionamigeliânalineinomuskoritele
AT shevchenkoos termodesorbciâizkonstrukcionnyhmaterialovoblučennyhionamigeliânalineinomuskoritele
first_indexed 2025-11-26T14:35:31Z
last_indexed 2025-11-26T14:35:31Z
_version_ 1850624602596704256
fulltext ISSN 1562-6016. ВАНТ. 2018. №3(115) 178 THERMODESORBTION FROM CONSTRUCTION MATERIALS IRRADIATED BY IONS OF HELIUM ON A LINEAR ACCELERATOR R.А. Anokhin, S.M. Dubniuk, B.V. Zaitsev, К.V. Pavlii, V.M. Reshetnikov, O.S. Shevchenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: sergdubnyuk@ukr.net On a linear accelerator samples of alloys of zirconium, molybdenum and stainless steels were irradiated by beams of helium ions with an energy of 0.12…4 MeV. The results of thermal desorption of helium from irradiated samples are reported in the temperature range 20…1500С. The results of the solution of the nonstationary equation of diffusion are presented with allowance for helium deposition profiles and damageability over the thickness of the sample. The determining factor in the formation of the second peak of thermal desorption is the shift in the maxi- mum of the damage profile relative to the maximum profile of helium deposition in irradiated samples. PACS: 29.27.-a INTRODUCTION Structural materials of nuclear power plants operate under difficult conditions of neutron irradiation, which accelerates creep processes, reduces strength and reduc- es deformation capacity at moderate (20...450°C), high (500...800°C) and ultrahigh (above 800°C) temperatures [1]. As a result of nuclear reactions, gaseous impurities (helium, hydrogen) are formed in the materials, promot- ing the appearance of helium embrittlement, hydrogen embrittlement and gas swelling. In thermonuclear reac- tors, the sources of helium are the products of the ther- monuclear reaction (d, t), the decay of tritium, the breeding reaction: 6 Li + 1 n = 3 T + 4 He; 7 Li + 1 n = 3 T + 4 He + 1 n. In the volume of the material, the greatest contribu- tion to the production of helium is due to the (n, a) reac- tion under the action of high-energy neutrons: A MZ + 1 n0 f = A-3 M'Z-2 + 4 He2 or A MZ + 1 n0 f = A-4 M'Z-2 + 4 He2. The source of helium in nuclear reactors are nuclear reactions in materials under the action of thermal neu- trons. Comparison of helium production in fusion and fission reactors shows that the He/dpa ratio in nuclear reactors is about 30 to 80 times lower compared to fu- sion reactors [1]. The accumulation of helium in the structural materials of nuclear and thermonuclear reac- tors leads to a change in the physicochemical properties of the materials under irradiation [2 - 5], which indicates an increase in the negative role of helium when it is introduced into materials [6, 7]. The ratio between the rate of helium accumulation and the rate of defect for- mation (He/dpa) [8, 9], is a key parameter for many observed phenomena. The development of nuclear pow- er generates a problem in the development of new radia- tion-resistant materials for new and future nuclear reac- tors with a view to ensuring the safety and economy of electricity produced. The aim of the work is to irradiate the structural ma- terials of nuclear and thermonuclear reactors on a linear accelerator of helium ions with energies of 0.12…4 MeV, followed by a study of the thermal de- sorption process in the temperature range 20…1500°C, as well as a mathematical description of the radiation component of the helium diffusion process taking into account the profiles of damage and deposition. 1. ACCELERATOR AND INJECTOR OF HELIUM IONS At present, most studies of the effect of helium on the development of radiation damage have been carried out using ion implantation. To study the processes asso- ciated with implantation, a linear accelerator of helium ions with energy of up to 4 MeV operates at the NSC KIPT [10]. The accelerating section is designed to accelerate Не + ions to 4 MeV (input energy is 30 keV/nucl.). In the ac- celerating structure of the counter-pin type, a method of variable-phase focusing with a step change in the syn- chronous phase along the focusing periods is used to fo- cus the beam [11]. The effectiveness of this method de- pends on the configuration of the focusing period. The choice of synchronous phases ensured the capture of a beam of high-intensity ions in a phase angle of 120°, as well as the radial and phase stability of ion clusters along the accelerating structure. In order to ensure the maximum capture of particles (120°) in the regime of stable radial and longitudinal motion, the accelerating field in the initial part of the structure was made incre- mental. As a result of the calculations and experimental work performed during the setup and start-up of the accelerator section, a predetermined distribution of the electric field in the structure at the operating frequency of 47.2 MHz was obtained. The main parameters of the accelerator structure are given in Table 1. Table 1 Options POS-4 Ion energy at the entrance, keV/nucl. 30 Energy of the accelerated ions, keV/nucl. 975 The ratio of the ion mass-to-charge 4 Operating frequency, MHz 47.2 Maximum accelerating field, kV/cm 85 Overall acceleration rate MeV/m 1.6 Resonator length, m 2.39 Cavity diameter, cm 107.5 Number of drift tubes 32 Pulse current of accelerated ions, mA 6 Input surge current, mA 30 To inject the beam into the accelerator section, an injector of singly charged helium ions was developed and fabricated. The injector consists of an ion source, a beam pulling and focusing system, and an accelerating tube. To form a beam with given parameters, a source of mailto:sergdubnyuk@ukr.net ISSN 1562-6016. ВАНТ. 2018. №3(115) 179 the duoplasmotron type was chosen, with electrons os- cillating in the anode region. The injector makes it pos- sible to obtain a beam of singly charged helium ions with currents of several tens of milliamperes. The main parameters of the injector are given in Table 2. Table 2 Injector parameters The working gas helium Arc current, A 2…4 The beam current at the output, mA to 20 The energy of the particles at the outlet of up to, keV to 140 The beam diameter at the output, mm ~ 8 Working gas pressure in the anode region of the source, mm Hg 5∙10 -3 Sampling frequency, Hz 2…10 Pulse duration modulator arc, µs 500 The magnetic field source, Oe 300…700 2. IRRADIATION, CHARACTERISTICS OF SAMPLES AND EXPERIMENTAL RESULTS To irradiate samples from structural materials, a camera was developed and fabricated [13]. During the irradiation, the temperature of the sample, the beam current, and the irradiation dose were measured. The design of the chamber allows to change the temperature of the sample to 1000С, allows to control the vacuum, which is carried out with the help of vacuum pumps and turbomolecular pumps up to 4·10 -6 atm. The temperature of the sample upon irradiation was measured by a chromel-alumel thermocouple attached to the sample from the opposite side with respect to the incident beam. The signal from the thermocouple was amplified by a differential amplifier. The calibration was carried out taking into account the length (~ 30 m) of the measuring wires. The current of the helium ion beam was meas- ured by a transit sensor installed up to the sample at a distance of ~ 30 cm and graduated with the help of a Faraday cylinder installed at the exit of the accelerator, before each irradiation. The diameter of the beam of ions incident on the sample is ~ 30 mm, therefore, the area of the irradiated sample is ≈ 10 cm 2 . Table 3 Materials and parameters of irradiation № Material Thickn- ess of sample, µA Energy of ions Не, MeV Average Irradiation Tempera- ture, C Total radiation dose 1 Stainless steel 200 4 72 7.5∙10 15 2 Steel-3 100 78 1.5∙10 16 3 Zr+2.5% Nb 250 70 2.3∙10 16 4 Zr 300 58 5∙10 16 5 Zr+1%Nb 250 2.6 40…80 5∙10 16 6 (4+0.12) 5∙10 16 + 5∙10 16 7 0.12 5∙10 16 8 0.12 5∙10 17 9 Nb 16 4 40 5∙10 16 10 Nb+1%Zr 22 During the experiments on the accelerator, irradia- tion of samples from structural materials was carried out, the main characteristics of which are presented in Table 3. When measuring the main radiation parameters, the analog-digital converter ZET 210 "Sigma USB" con- nected to a personal computer was used. This converter allows you to connect and process signal sources with different frequency ranges and perform a comparative analysis. Schemes of devices for measuring the tem- perature of irradiation, beam current, dose and electro- physical properties have been created. In Fig. 1 shows the dependence of the sample tem- perature on the irradiation time. Similar dependences were obtained for the peak beam current and the irradia- tion dose versus time. 0 5 10 15 20 25 30 35 40 45 50 69 70 71 72 73 74 75 76 t, min T , 0 C Turned on Turned off Fig. 1. Dependence of the sample temperature (stainless steel) on the time of irradiation For all the irradiated samples, using the SRIM pro- gram, calculations were made of the distributions of dam- age and helium abundance in thickness. For example, in Fig. 2 shows the dependences for Zr + 1% Nb, with dos- es at 120 KeV and 4 MeV  identical  5·10 16 ions. When these curves are approximated by Gaussian de- pendences, it follows that the dispersion decreases prac- tically exponentially with decreasing ion energy. The damage profiles were also calculated in all irradiated samples and approximate expressions were obtained. 0,0 0,5 1,0 8,5 9,0 9,5 10,0 10,5 11,0 0,0 0,2 0,4 0,6 0,8 1,0 Ф = 5*10 16 Е = 4 MeV C on ce nt ra ti on , r el at iv e un it s L,µA Ф = 5*10 16 Е = 120 keV Fig. 2. The calculated profile of the distribution of helium ions implanted in Zr + 1% Nb with an energy of 120 KeV (left graph) and 4 MeV (the first graph), the dose is 510 15 He/cm 2 The behavior of helium in the materials studied after irradiating them with helium ions with an energy of 0.12...4 MeV was studied using the thermally stimulated desorption (TD) technique. In experiments, a thermode- sorption technique was used in a dynamic mode, in which the gas pressure in the chamber was proportional ISSN 1562-6016. ВАНТ. 2018. №3(115) 180 to the rate of desorption from the metal. Samples were studied in the temperature range 0...1500°C. Studies of dermodiffusion were carried out [12] at the Institute of Solid State Physics, Materials Science and Technology NSC KIPT. The spectra of thermal desorption of helium from a sample of Zr+1% Nb are given in Fig. 3. More fully experimental results are presented in [13]. Fig. 3. Thermal desorption spectrum of helium from a sample of the Zr + 1% Nb alloy irradiated with He + ions with energy 4 MeV + 120 keV (upper curve) and 120 keV (lower curve) It can be seen from the results that appreciable gas evolution begins at T ≈ 500°C and extends to T ≈ 1500°C. In this temperature range, the TD spectrum is characterized by a superposition of several desorption peaks. The complexity of the structure of the spectrum increases with increasing radiation dose. The maximum gassing is observed in the peak with the maximum tem- perature near T ≈ 1280C. Moreover, it should be noted that this stage of desorption is observed both in the spec- tra of samples irradiated to a dose of Ф = 5·10 15 cm -2 and in samples irradiated to a dose 10 times higher. A study of the gas evolution of helium from samples after their successive irradiation showed that the structure of the spectra in this case is less complicated than the spectra obtained by irradiating this alloy with 120 keV and 2.42 MeV He + ions. Noticeable desorption begins at T ≈ 600°С, the peak of gas evolution with a maximum at Т ≈ 1200°С predominates in the spectrum. 3. DESCRIPTION OF HELIUM DIFFUSION FROM IRRADIATED SAMPLES From an analysis of the experimental data, it follows that the presence of several peaks in the TD spectra in- dicates the existence of several discrete stages of helium separation, distinguished by the mechanisms of helium escape from the metal. Upon irradiation, helium atoms interact with crystal lattice defects, which are traps for helium. In this case, helium is captured by single vacan- cies, divacancies, clusters of vacancies. And also helium is captured by dislocations and grain boundaries, inter- phase boundaries, formation of helium and helium- vacancy clusters [1]. Traps for their ability to absorb and release diffusion-bearing atoms are conventionally divided into three groups: with negligible retention ca- pacity; traps, which are constant for all temperatures and times of the experiment, capable of absorbing and releasing diffusing atoms; traps which, at the tempera- ture of the experiment, firmly hold the diffusing atoms. In addition, the effective diffusion coefficient has a temperature dependence including the activation energy, which is the sum of the activation energies for simple interstitial diffusion and the contribution from the bind- ing energy in the trap. On the diffusing substance, in our case  helium, the external force acts in the process of diffusion. Then, a flux caused by the action of an exter- nal force field will be superimposed on the flow of mat- ter JD, vJ Cv ( v  the directed velocity of the sub- stance acquired under the influence of the field), and the total flux of the diffusant can be written as follows: ( )J D C x Cv     . In our case, it is necessary to determine the role of the radiation component, expressed as a function of damage from the thickness of the sample, and the pro- file of helium deposition implanted in the sample. In describing diffusion processes, the role of defects in materials can be taken into account in two ways: by modifying differential equations or by modifying the diffusion coefficient itself, leaving the differential equa- tion in its original form. You can also use a combination of these approaches. To describe the diffusion of helium from irradiated structural materials, we used the equa- tion in the form: 2 C C D C V eff 2 t xx          , (1) with the following boundary conditions:    C h , tС 0, t max 0, 0, x x      (2) where hmax is the maximum range of helium ions in the sample under irradiation; C  is the concentration, t  is the time; x  is the coordinate (the diffusion thickness of the sample); V  is the diffusion rate determined by the following expression: V D ln C eff x     , (3) where Deff  is the effective diffusion coefficient, which was determined from the experimental data. In Fig. 4 shows the dependence of the effective diffusion coeffi- cient of helium on the temperature for Zr+1% Nb. It follows from the dependence that a phase transition of the irradiated material Zr+1% Nb is observed in the temperature range 660…800С. The same conclusion follows from Fig. 5. Fig. 4. Dependence of the diffusion coefficient on the temperature for Zr + 1% Nb ISSN 1562-6016. ВАНТ. 2018. №3(115) 181 This is the experimental temperature dependence of the heated sample from the time, obtained with a linear change in the heating power. From Fig. 5 that the slope of the curve decreases in the range of 660…800С, which also confirms the presence of a phase transition. 0 100 200 300 400 500 2 5 1 2 см D 10 сек  a 2 T , 0 C t, s a 1 660 0 C 800 0 C 2 7 1 2 см D 10 сек  1400 800 660 0 Fig. 5. Experimental dependence of the sample heating temperature on time (sample  Zr + 1% Nb) These changes must be taken into account in equa- tion (1) in determining the effective diffusion co- efficient in the following form: Const T 660 C, 1 D D T, 660 C T 800 C, 0eff Const T 800 C, 2 , ,              (4) where   is the proportionality coefficient. In the first approximation, linear dependence can be used. This dependence should be taken into account only in the presence of phase transitions. The initial conditions for equation (1) were obtained by approximating the profile of the distribution of heli- um for Zr+1% Nb and have the form:         2 2907.17 exp 6.67 x 10.68 x 10.68 C x, t 0 Cm 2 2907.17 exp 24.58 x 10.68 x 10.68,              where Cm was normalized to the total radiation dose: hmax t C(x, t 0) dx Cm 0      . The account of the damageability of the sample, af- ter its irradiation on the accelerator, was taken into ac- count in the diffusion coefficient as follows. The diffu- sion coefficient can be represented: DPA D D0 i DPA(x)  , where DPA  the average number of displacements at the diffusion length, DPA(x)  the function of the dis- tribution of the damage profile, which for Zr+1% Nb is written:        2 m 2 0.012 , x 10.56 x 10.56 0.1028DPA x DPA 0.1941exp 13.16 x 10.56 , x 10.56.           The average number of offsets is determined by: hmax1 DPA DPA(x) dx 0hmax   and is normalized to the radiation dose, taking into ac- count the energy required for a single bias (K  the number of displacements per ion): hmax K t DPA(x) dx DPAm 0      . Then the effective diffusion coefficient can be repre- sented in the form: E i D D exp0eff kT(t)         , where iE  is the activation energy; T  is the tempera- ture that is changed during the experiment; k  is the Boltzmann constant. Numerically solving the diffusion equation, taking into account the distribution functions of helium and damage and taking into account the ex- perimental parameters, namely, the temperature change from time to time, the calculated thermodesorption curves of helium from irradiated samples were obtained. In Fig. 6 shows the calculated and experimental de- pendences of helium desorption from a Zr+1% Nb sam- ple irradiated by helium ions with an energy of 4 MeV on a linear accelerator. Fig. 6. Calculated (upper curve) and experimental (lower curve) desorption curves from a Zr + 1% Nb sample irradiated with helium ions with an energy of 4 MeV It follows from the calculations that the maximum of the damage profile is shifted to the surface of the sample on which the beam was incident, in relation to the max- imum profile of helium deposition. In this case, the problem can be interpreted as the motion of helium in the field of radiation damage. This effect explains the appearance of a second peak on the desorption curve. CONCLUSIONS On a linear accelerator of helium ions with energies 0.12…4 MeV, irradiation of structural materials was carried out with subsequent study of thermal desorption. In the description it was shown that the second peak on the desorption graph is formed due to the shift of the maximum of the radiation damage relative to the maxi- mum of helium deposition. ISSN 1562-6016. ВАНТ. 2018. №3(115) 182 REFERENCES 1. I.M. Nekluydov, G.D. Tolstolutskaya. Helium and hydrogen in structural materials // Problems of Atomic Science and Technology. Series “Physics of Radiation Effects and Radiation Materials Science”. 2003, № 3, p. 3-14. 2. H. Ullmaier. The influence of helium on the bulk properties of fusion reactor structural materials // Nuclear fusion. 1984, v. 24, № 8, p. 1039-1083. 3. V.F. Zelensky, I.M. Neklyudov, T.P. Chernyaeva. Radiation defects and swelling of metals. Kiev: "Naukova Dumka", 1988, 296 p. 4. A.I. Ranyuk, V.F. Rybalko. Helium in a lattice of metals: Review. M.: "CRIAtominform", 1986, p. 64. 5. I.M. Nekluydov, V.F. Rybalko, G.D. Tolstolutskaya. Evolution profiles of helium and hydrogen in mate- rials during irradiation and annealing. M.: "CRIA- tominform", 1985, p. 41. 6. I. Mukouda, Y. Shimomura, T. Iiyama, et al. Micro- structure in pure copper irradiated by simultaneous multiion beam of hydrogen, helium and self ions // J. of Nucl. Mater. 2000, v. 283-287, p. 302-305. 7. B.H. Sencer, G.M. Bond, F.A. Garner, et al. Micro- structural evolution of alloy 718 at high helium and hydrogen generation rates during irradiation with 600…800 MeV protons // J. of Nucl. Mater. 2000, v. 283-287, p. 324-328. 8. E.E. Bloom. Mechanical properties of materials in fusion reactor first-wall and blanket systems // J. of Nucl. Mater. 1979, v. 85 and 86, p. 795-799. 9. V.O. Bomko, А.M. Yegorov, В.V. Zaytsev, А.F. Kobets, К.V. Pavlii. Development of the “MILAC” complex for nuclear physical investiga- tion // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2008, №3(49), p. 100-104. 10. V.A. Bomko, A.P. Kobets, S.S. Tishkin, et al. Vari- ant of alternating phase focusing with the stepped change of the synchronous phase // Problems of Atomic Science and Technology. Series “Nuclear physics investigations”. 2004, № 2, p. 153-155. 11. I.M. Neklyudov, V.N. Voyevodin, V.V. Ruzhitsky, et al. A combination of the method of nuclear reac- tions, thermal de-sorption spectrometry, and two- beam irradiation in studying the behavior of helium and hydrogen in structural materials // Proceedings of the XIV International Meeting “Radiation Physics of Solids”, Sevastopol, July 5-10, 2004, p. 592-596. 12. R.А. Anokhin, V.N. Voyevodin, S.N. Dubnyuk, et al. Methods and experimental results constructions materials irradiation of helium ions at the linear ac- celerator // Problems of Atomic Science and Tech- nology. Series “Physics of Radiation Effects and Radiation Materials Science”. 2012, №5(81), p. 123-130. Article received 09.10.2017 ТЕРМОДЕСОРБЦИЯ ИЗ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ, ОБЛУЧЕННЫХ ИОНАМИ ГЕЛИЯ НА ЛИНЕЙНОМ УСКОРИТЕЛЕ Р.А. Анохин, С.Н. Дубнюк, Б.В. Зайцев, К.В. Павлий, В.Н. Решетников, А.С. Шевченко На линейном ускорителе были облучены образцы сплавов циркония, молибдена и нержавеющих сталей пучками ионов гелия с энергией 0,12…4 МэВ. Приведены результаты термодесорбции гелия из облученных образцов в диапазоне температур 20…1500С. Представлены результаты решения нестационарного уравне- ния диффузии с учетом профилей залегания гелия и повреждаемости по толщине образца. Определяющим фактором образования второго пика термодесорбции является сдвиг максимума профиля повреждаемости относительно максимума профиля залегания гелия в облученных образцах. ТЕРМОДЕСОРБЦІЯ З КОНСТРУКЦІЙНИХ МАТЕРІАЛІВ, ОПРОМІНЕНИХ ІОНАМИ ГЕЛІЮ НА ЛІНІЙНОМУ ПРИСКОРЮВАЧІ Р.А. Анохін, С.М. Дубнюк, Б.В. Зайцев, К.В. Павлій, В.М. Решетніков, О.С. Шевченко На лінійному прискорювачі були опромінені зразки сплавів цирконію, молібдену і нержавіючих сталей пучками іонів гелію з енергією 0,12…4 МеВ. Наведено результати термодесорбції гелію з опромінених зраз- ків у діапазоні температур 20…1500С. Представлені результати рішення нестаціонарного рівняння дифузії з урахуванням профілів залягання гелію і пошкоджуваності по товщині зразка. Визначальним фактором ви- никнення другого піку термодесорбції є зрушення максимуму профілю пошкоджуваності щодо максимуму профілю залягання гелію в опромінених зразках.