Power supply development for ion source of accelerator MLUD-3

The paper presents the results obtained during the development of the design of the power supply for a ions source of the douplasmatron type with a hollow cold cathode, which operates in a pulsed mode .The experience of using the existing power supply device is generalized and the need for work on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Gussev, Ye.V., Manuilenko, O.V., Sokol, V.N., Turchin, А.А., Zhiznevsky, V.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147336
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Power supply development for ion source of accelerator MLUD-3 / Ye.V. Gussev, O.V. Manuilenko, V.N. Sokol, А.А. Turchin, V.V. Zhiznevsky // Вопросы атомной науки и техники. — 2018. — № 4. — С. 42-45. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147336
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1473362025-02-09T14:37:06Z Power supply development for ion source of accelerator MLUD-3 Pозробка пристрою живлення джерела іонів прискорювача МЛУД-3 Разработка устройства питания источника ионов ускорителя МЛУД-3 Gussev, Ye.V. Manuilenko, O.V. Sokol, V.N. Turchin, А.А. Zhiznevsky, V.V. Нерелятивистская электроника The paper presents the results obtained during the development of the design of the power supply for a ions source of the douplasmatron type with a hollow cold cathode, which operates in a pulsed mode .The experience of using the existing power supply device is generalized and the need for work on a new power supply device creation is justified. The choice of circuit solutions for the design is discussed, as well as the main parameters of the device Наведені результати, отримані в процесі розробки конструкції пристрою живлення для джерела іонів типу дуаплазматрон з порожнистим холодним катодом, який працює в імпульсному режимі. Узагальнено досвід використання існуючого пристрою живлення і обґрунтовано необхідність проведення робіт по створенню нового пристрою живлення. Обговорюється вибір схемних рішень, покладених в основу розробки, а також наведено основні параметри пристрою. Приведены результаты, полученные в процессе разработки конструкции устройства питания для источника ионов типа дуаплазматрон с полым холодным катодом, работающим в импульсном режиме. Обобщен опыт использования имеющегося устройства и обоснована необходимость проведения работ по созданию нового устройства питания. Обсуждается выбор схемных решений, положенных в основу разработки, а также приведены основные параметры устройства. 2018 Article Power supply development for ion source of accelerator MLUD-3 / Ye.V. Gussev, O.V. Manuilenko, V.N. Sokol, А.А. Turchin, V.V. Zhiznevsky // Вопросы атомной науки и техники. — 2018. — № 4. — С. 42-45. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 29.20.−c, 85.30.De, 85.60.−q https://nasplib.isofts.kiev.ua/handle/123456789/147336 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Нерелятивистская электроника
Нерелятивистская электроника
spellingShingle Нерелятивистская электроника
Нерелятивистская электроника
Gussev, Ye.V.
Manuilenko, O.V.
Sokol, V.N.
Turchin, А.А.
Zhiznevsky, V.V.
Power supply development for ion source of accelerator MLUD-3
Вопросы атомной науки и техники
description The paper presents the results obtained during the development of the design of the power supply for a ions source of the douplasmatron type with a hollow cold cathode, which operates in a pulsed mode .The experience of using the existing power supply device is generalized and the need for work on a new power supply device creation is justified. The choice of circuit solutions for the design is discussed, as well as the main parameters of the device
format Article
author Gussev, Ye.V.
Manuilenko, O.V.
Sokol, V.N.
Turchin, А.А.
Zhiznevsky, V.V.
author_facet Gussev, Ye.V.
Manuilenko, O.V.
Sokol, V.N.
Turchin, А.А.
Zhiznevsky, V.V.
author_sort Gussev, Ye.V.
title Power supply development for ion source of accelerator MLUD-3
title_short Power supply development for ion source of accelerator MLUD-3
title_full Power supply development for ion source of accelerator MLUD-3
title_fullStr Power supply development for ion source of accelerator MLUD-3
title_full_unstemmed Power supply development for ion source of accelerator MLUD-3
title_sort power supply development for ion source of accelerator mlud-3
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2018
topic_facet Нерелятивистская электроника
url https://nasplib.isofts.kiev.ua/handle/123456789/147336
citation_txt Power supply development for ion source of accelerator MLUD-3 / Ye.V. Gussev, O.V. Manuilenko, V.N. Sokol, А.А. Turchin, V.V. Zhiznevsky // Вопросы атомной науки и техники. — 2018. — № 4. — С. 42-45. — Бібліогр.: 6 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT gussevyev powersupplydevelopmentforionsourceofacceleratormlud3
AT manuilenkoov powersupplydevelopmentforionsourceofacceleratormlud3
AT sokolvn powersupplydevelopmentforionsourceofacceleratormlud3
AT turchinaa powersupplydevelopmentforionsourceofacceleratormlud3
AT zhiznevskyvv powersupplydevelopmentforionsourceofacceleratormlud3
AT gussevyev pozrobkapristroûživlennâdžerelaíonívpriskorûvačamlud3
AT manuilenkoov pozrobkapristroûživlennâdžerelaíonívpriskorûvačamlud3
AT sokolvn pozrobkapristroûživlennâdžerelaíonívpriskorûvačamlud3
AT turchinaa pozrobkapristroûživlennâdžerelaíonívpriskorûvačamlud3
AT zhiznevskyvv pozrobkapristroûživlennâdžerelaíonívpriskorûvačamlud3
AT gussevyev razrabotkaustrojstvapitaniâistočnikaionovuskoritelâmlud3
AT manuilenkoov razrabotkaustrojstvapitaniâistočnikaionovuskoritelâmlud3
AT sokolvn razrabotkaustrojstvapitaniâistočnikaionovuskoritelâmlud3
AT turchinaa razrabotkaustrojstvapitaniâistočnikaionovuskoritelâmlud3
AT zhiznevskyvv razrabotkaustrojstvapitaniâistočnikaionovuskoritelâmlud3
first_indexed 2025-11-26T21:35:10Z
last_indexed 2025-11-26T21:35:10Z
_version_ 1849890349880705024
fulltext ISSN 1562-6016. ВАНТ. 2018. №4(116) 42 POWER SUPPLY DEVELOPMENT FOR ION SOURCE OF ACCELERATOR MLUD-3 Ye.V. Gussev, O.V. Manuilenko, V.N. Sokol, А.А. Turchin, V.V. Zhiznevsky National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: turchin@kipt.kharkov.ua The paper presents the results obtained during the development of the design of the power supply for a ions source of the douplasmatron type with a hollow cold cathode, which operates in a pulsed mode .The experience of using the existing power supply device is generalized and the need for work on a new power supply device creation is justified. The choice of circuit solutions for the design is discussed, as well as the main parameters of the device. PACS: 29.20.−c, 85.30.De, 85.60.−q INTRODUCTION The ion source in the MRLU-3 accelerator is a dou- ble-chamber plasmatron [1] with a hollow cold cathode. A feature of his work is the need for the existence of a high-voltage (≥400 V) gas discharge in the first cham- ber. This kind of discharge provides a powerful emis- sion of electrons from the developed inner surface of the cathode. With these discharge parameters, a paraxial electron beam with a current of ∼150 A is created, providing a high degree of ionization in the near-axis region in the second discharge chamber [2]. A low- voltage arc discharge in a contracting magnetic field cre- ated by an electromagnet makes it possible to obtain in the second chamber of the ion source a high content of the atomic component of the ionized gas H+ 1 or D+ (75...90)%. To power supply the ion source for a long time, the mockup of the ion source power supply device (ISPSD) created in the department was used. It consists of modu- lators supplying the discharge chambers of the ion source and the solenoid valve for the gas inlet, as well as the current source for the electromagnet. The power supply provides the necessary duration and magnitude of the current pulses in the discharge chambers of the source. The device is shown in Fig. 1, it is located in two baskets of the "Vishnja" standard. The parameters of the power supply corresponded to the requirements that were lodge during the adjustment and investigation of the accelerator characteristics [3 - 5]. During the adjustment process, it turned out that the device does not meet certain requirements required when operating the accelerator as a radiation irradiation setup. In particular, it does not provide the required sta- bility of the currents in the discharge chambers, as there is no stabilization of the charging voltage of the storage capacitors. Regulators of storage capacitors charge volt- age are made on autotransformers, which were operated by means of insulating rods. The maximum repetition rate of impulse did not exceed 2 Hz. This is due to the low speed of the modulator's storage capacitors charge circuits and the limited amount of permissible power dissipation on the pulse modulators elements. Since at the end of the adjustment work on the MLUD-3 accelerator it is planned to use it as an irradia- tion unit, we have made efforts to create a new ion source power supply device providing the required pa- rameters. Namely, the device should provide a high sta- bility of the proton beam current at a frequency of par- cels of at least 10 Hz and a pulse width of 250...300 μs. Fig. 1. Model of ion source power supply device DEVELOPMENT POWER SUPPLY DEVICE OF THE ION SOURCE During the operation of the accelerator ISPSD is at a high potential of 75 or 150 kV, depending on the operat- ing mode of the accelerator. Therefore, to connect the device to the 220 V/50 Hz network, a separating trans- former (220/220 V) is used, designed to operate at a potential on the secondary winding up to 300 kV. The ion source power supply device is located in the basket of the "Vishnja" standard. Dimensions of the developed ISPSD are 528×263×485 mm. The view of device front panel is shown in Fig. 2. The ISPSD is created using modern circuit technol- ogy solutions and electronic components of a high de- gree of integration. The device contains seven blocks, each of which has its own functional purpose. They are located in five modules. The first module is a multi-channel power supply. It provides the generation of voltages necessary for the operation of control devices and monitoring its parameters and also voltage of +300 V for powering the pulse modulators. The two following modules generate a pulse voltage supply for the discharge chambers of the ion source (Arc 1 and Arc 2). In the third module (Arc 2), a block is placed that converts electrical analog signals containing information about the parameters of the operation of pulse modulators to optical analog sig- nals for transferring them to a low potential. The elec- tromagnet power supply block and block of the voltage generation, which controls the duration of the open state of the impulse gas valve, are located in the fourth mod- ule. The fifth module provides reception and processing of digital optical signals, which ensure synchronization of the operation and control of pulse devices. Control signals are generated in the ISPSD control module, and the clock pulses are generated by the accelerator timer [6], which are located in the control room. ISSN 1562-6016. ВАНТ. 2018. №4(116) 43 Fig. 2. ISPSD front panel On the modules front panels there are the organs for switching on the units located in the modules, as well as the operating controls for the operating modes and the block status indicators. On the panel there are checks sockets, on which the voltages produced in the blocks are output. On the front panel of module № 5 there are connectors to which optical fibers are connected, through which digital signals are enter the ISPSD to control the device. On the panel of module № 3 there are connectors through which analog light signals are outputted to the light guides. These signals contain in- formation about the discharges parameters in the ion source chambers. Voltages necessary for operation of the control and monitoring circuits of ion source power supply device blocks are generated by high-frequency (50…100 kHz) adjustable converters located in the power supply block № 1, Fig. 3 in the upper left. In this block, a constant voltage of +300 V is generated, which is used to operate high-frequency converters providing power to storage capacitors in pulse modulators. The same voltage is used for converters providing power to the electromag- netic lens and the gas inlet valve in the ion source. The use of high-frequency voltage converters made it possi- ble not only to obtain the necessary voltages with high accuracy and stability, but also to significantly reduce the mass-dimensional parameters of the device, as well as improve its efficiency. Signals that control the parameters of the pulse modulators, of the electromagnet current source, and the gas valve, which are generated in the control unit and the timer, through the cable lines, first come to the transceiver (Fig. 4). The device converts of frequency- pulse electrical signals into light pulses. Then, light pulses through optical waveguide up to 6 m in length are transmitted to the ion source power supply device (see Fig. 3). Optical waveguides provide high voltage isolation (up to 200 kV). The control module of the ion source power supply, located in the control room, gen- erates control signals and checking of the ISPSD opera- tion parameters. The module is made in the «САМАС» standard. Signals that synchronize the operation of ion source power supply pulse devices and the duration of the open state of the gas valve come from the accelera- tor timer in a similar way. Light impulses by means of optical waveguides of 6 m length, which provide high voltage isolation (up to 200 kV), are then transmitted to the ion source power supply device on a block of optical digital converters. After converting the light signals into electrical pulses, they are transferred to the correspond- ing blocks of ion source power supply. The speed of information transmission by digital channels is 1000 kBaud. Adjustment of the charging voltage of the storage capacitors of modulators Arc 1 and Arc 2 and the current of the magnet is effected by changing the frequency of the control pulses. The frequency of the control pulses can vary in the range from 1 to 10 kHz, the stability of the frequency setting is 10-4 with lineari- ty not worse than 10-4. To achieve the required accuracy of adjusting the voltage supplied to the consumers, variable 10-turn re- sistors are used as regulating elements. The frequency- pulse method of parameters adjustment provides high noise immunity of control circuits in the presence of powerful pulsed and high-frequency fields created by the accelerator systems. Crate “Vishnya” (528⋅263⋅485 mm) 24 0 m m ISSN 1562-6016. ВАНТ. 2018. №4(116) 44 Fig. 3. Block diagram ISPSD power supply device Fig. 4. Optoelectronic transceiver Electrical signals characterizing the discharge pa- rameters in the ion source chambers (Arc 1 and Arc 2) and the magnitude of the electromagnet current are taken off from the measuring voltage dividers and shunts. These voltages and currents are supplied to the unit № 7 located in module № 3 (see Fig. 3), in which the electrical analog signals are converted into light analog signals and transmitted to the optical channels. Light signals via an optoelectronic line are transmitted to the transceiver (see Fig. 4), which converts analog light signals into electrical analog signals. In subsequent, these signals are transmit- ted through the cable lines to the control room to the con- trol unit of the ISPSD and to the measuring equipment. The bandwidth of analog optical channels is not less than 300 kHz, the accuracy of signal conversion in the transceiver is not worse than 3%. Modulators that produce voltage for feeding the dis- charge chambers of the ion source (see Fig. 3), are de- signed according to the scheme with a partial discharge of storage capacitors. Such a circuit solution allows the construct of modulators with a high repetition rate of modulating pulses. With a relatively simple circuit solu- tion, modulators with a partial discharge make it possi- ble to stabilize the voltages and currents in the discharge circuits with high accuracy. The disadvantage of such modulators is the large capacitance of the storage capac- itors necessary to achieve high stability of voltage or current in the discharge circuit during the discharge pulse. To achieve the stability of the current in the dis- charge circuit of the modulator, Arc 1 is not worse than 1% at a discharge current of up to 150 A and pulse dura- tion of 300 μs, as shown by calculations, the total capac- itance of the storage capacitors should be ∼9000 μF. The storage capacitors in the Arc 1 modulator must withstand a voltage of at least 450 V needed to create a high-voltage discharge. The operating mode of the Arc 2 modulator is less intense, the operating voltage of the storage capacitors does not exceed 100 V, and the discharge current is not more than 100 A. Therefore, the estimated value of the storage capacity is approximately half that of the first case. Modulators with partial dis- charge have low output impedance, which provides a high efficiency of device. For switching in the circuits of the modulators Arc 1 and Arc 2, the keys on the IGBT transistors type SKM200GAL123D are used. he selected transistors have a fast-switching commutation and provide switch- ing current up to 200 A at a voltage of up to 1700 V. To facilitate ignition of the discharge in the first chamber synchronously with the main discharge an ad- ditional high-voltage low-power discharge with voltage ~1.5...2 kV is used, which initializes the breakdown of the discharge gap. The ion source power supply modulators have high- speed protection against breakdowns in the ion source and ISPSD. Response time of protection is not more than 0.5 μs. The protection is disconnected remotely in the ion source power supply control unit. In Fig. 5 shows the exchange of information between the ISPSD control unit and the timer located in the con- trol room and the power supply device of ion source. As shown in Fig. 5, from the timer to the power sup- ply of the ion source, the impulses synchronizing the work of the modulators Arc 1 and Arc 2, as well as the signal controlling the duration of the open state of ion source gas valve, are transmitted. The signals control- ling the modes of modulators operation and the source of electromagnet current supplying come from the con- trol unit of the ion source power supply. From the pow- er supply device of the ion source to the control unit, a signal of triggering of interlocks in the power device. This signal informs either of a breakdown in the ion source, or the absence of a coolant flow in it, as well as an increase in the temperature of the electromagnet coil above a predetermined value. ms ISSN 1562-6016. ВАНТ. 2018. №4(116) 45 Fig. 5. Block diagram of the ISPSD control CONCLUSIONS The presented results of designing and modeling modules and units of the ion source power supply showed that with the chosen approach to creating a power supply, we managed to create a model of the de- vice with parameters that will ensure the operation of the accelerator MLUD-3 as a radiation irradiation instal- lation. The use of modulators with a partial discharge of storage capacitance made it possible to obtain a good stability of the discharge parameters in the ion source chambers. The applied method of frequency-pulse con- trol allowed not only to obtain high accuracy and linear- ity of adjustment of power supply parameters, but also provided noise immunity of control channels. It should be noted that the developed principle of creating an ion source power supply is a typical solu- tion. It can be taken as a basis for creating power sup- plies of ion sources of other types or ion sources with other operating parameters. This device can be used both for electric power supply of ion sources used in accelerator technology, and for ion sources used in other fields of physics and technology. REFERENCES 1. A method for forming charged particle beams. Cer- tificate of authorship №1052143, 1983. 2. B.I. Moskalev. Discharge with hollow cathode. Moscow: “Energija”, 1969 (in Russian). 3. L.N. Baranov, Ye.V. Gussev, S.S. Kaplin, N.Е. Кovpak, V.T. Оnoprienko, V.G. Papkovich, N.А. Khizhnjak, N.G. Shulika. Experimental study of a small linear accelerator of deuterons with alternating phase fo- cusing // Problems of Atomic Science and Technology. Series “Linear Accelerators”. 1977, № 2, p. 12-14. 4. Ye.V. Gussev, V.N. Derepovsky, S.Yu. Krivulja, V.I. Kolodjaznyj, V.V.Logvin, A.V. Ovchinnikov, V.I. Povshenko, V.V. Chernosov, А.I. Chkalov, N.G. Shulika. Investigation of the accelerating struc- ture of the deuteron accelerator MULD-3 // Prob- lems of Atomic Science and Technology. Series “Nuclear Physics Investigations (theory and exper- iment)”(5). 1989, №5, p.37-39. 5. S.A. Vdovin, Ye.V. Gussev, P.O. Demchenko, M.G. Shulika. Linear deuteron accelerator for ele- ment analysis // Problems of Atomic Science and Technology. Series Nuclear “Physics Investigations. 2010, № 2, p. 29-33. 6. V.V. Zhiznevsky, А.А. Turchin, А.А. Turchin. Tim- er-synchronizer accelerator MLUD // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Acceleration”. 2010, № 4, p. 376-380. Article received 16.06.2018 РАЗРАБОТКА УСТРОЙСТВА ПИТАНИЯ ИСТОЧНИКА ИОНОВ УСКОРИТЕЛЯ МЛУД-3 Е.В. Гусев, О.В. Мануйленко, В.Н. Сокол, А.А. Турчин, В.В. Жизневский Приведены результаты, полученные в процессе разработки конструкции устройства питания для источника ионов типа дуаплазматрон с полым холодным катодом, работающим в импульсном режиме. Обобщен опыт использования имеющегося устройства и обоснована необходимость проведения работ по созданию нового устройства питания. Об- суждается выбор схемных решений, положенных в основу разработки, а также приведены основные параметры устройства. РОЗРОБКА ПРИСТРОЮ ЖИВЛЕННЯ ДЖЕРЕЛА ІОНІВ ПРИСКОРЮВАЧА МЛУД-3 Е.В. Гусєв, О.В. Мануйленко, В.М. Сокол, О.А. Турчин, В.В. Жизневський Наведені результати, отримані в процесі розробки конструкції пристрою живлення для джерела іонів типу дуаплаз- матрон з порожнистим холодним катодом, який працює в імпульсному режимі. Узагальнено досвід використання існу- ючого пристрою живлення і обґрунтовано необхідність проведення робіт по створенню нового пристрою живлення. Обговорюється вибір схемних рішень, покладених в основу розробки, а також наведено основні параметри пристрою. Crate “Vishnya” (528⋅263⋅485 mm) РАЗРАБОТКА УСТРОЙСТВА ПИТАНИЯ ИСТОЧНИКА ИОНОВ УСКОРИТЕЛЯ МЛУД-3 Е.В. Гусев, О.В. Мануйленко, В.Н. Сокол, А.А. Турчин, В.В. Жизневский РОЗРОБКА ПРИСТРОЮ Живлення ДЖЕРЕЛА ІОНІВ ПРИСКОРЮВАЧА МЛУД-3