Аspects of electromagnetic compatibility at remote sensing of ionosphere in radiophysical observatory of Кharkiv National University

Specific responses of radio receivers of various type and frequency range under conditions to receiving of both a sole intense ultrashort signals and combination of information and interference ultrashort signals are studied. A possible scenario of functional upset of radio receivers at the V.N. Ka...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2018
Автори: Magda, I.I., Chernogor, L.F.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147347
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Аspects of electromagnetic compatibility at remote sensing of ionosphere in radiophysical observatory of Кharkiv National University / I.I. Magda, L.F. Chernogor // Вопросы атомной науки и техники. — 2018. — № 4. — С. 122-126. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147347
record_format dspace
spelling Magda, I.I.
Chernogor, L.F.
2019-02-14T14:23:57Z
2019-02-14T14:23:57Z
2018
Аspects of electromagnetic compatibility at remote sensing of ionosphere in radiophysical observatory of Кharkiv National University / I.I. Magda, L.F. Chernogor // Вопросы атомной науки и техники. — 2018. — № 4. — С. 122-126. — Бібліогр.: 18 назв. — англ.
1562-6016
PACS: 84.40, 94.05, 94.406
https://nasplib.isofts.kiev.ua/handle/123456789/147347
Specific responses of radio receivers of various type and frequency range under conditions to receiving of both a sole intense ultrashort signals and combination of information and interference ultrashort signals are studied. A possible scenario of functional upset of radio receivers at the V.N. Karazin Kharkiv National University Radiophysical Observatory during remotely sensing the ionosphere with new radar transmitting a few hundred MW ~10 ns pulse has been analyzed. In the tests of receivers, the characteristics of interference signals well enough meet the conditions of planned experiments to probe the ionosphere. It is expected that the research results will contribute to the development of various preventive measures for the electromagnetic protection of the radio facilities at the Radiophysical Observatory.
Досліджуються характерні види реакції радіоприймальних пристроїв різних типів і частотного діапазону в умовах прийому інтенсивних сигналів надкороткої тривалості, а також в умовах комбінованого прийому інформаційних сигналів і перешкоджаючих сигналів надкороткої тривалості. Проведено аналіз можливого сценарію збоїв радіоприймальних пристроїв радіофізичної обсерваторії ХНУ в умовах сеансу дистанційного радіозондування іоносфери, в якому використовується нове обладнання з імпульсною потужністю до декількох сотень мегават і тривалістю імпульсу близько 10 нс. У тестах приймальних пристроїв використані характеристики перешкоджаючих сигналів, які досить повно відображають можливі умови передбачуваних експериментів з радіозондування іоносфери. Передбачається, що результати досліджень будуть сприяти розробці різних превентивних заходів щодо електромагнітного захисту радіоелектронної апаратури обсерваторії.
Исследуются характерные виды реакций радиоприемных устройств различных типов и частотного диапазона в условиях приема интенсивных сигналов сверхкороткой длительности, а также в условиях комбинированного приема информационных сигналов и помеховых сигналов сверхкороткой длительности. Проведен анализ возможного сценария сбоев радиоприемных устройств радиофизической обсерватории ХНУ в условиях сеанса дистанционного радиозондирования ионосферы, в котором используется новое оборудование с импульсной мощностью до нескольких сотен мегаватт и длительностью импульса около 10 нс. В тестах приемных устройств использованы характеристики помеховых сигналов, которые достаточно полно отражают возможные условия предполагаемых экспериментов по радиозондированию ионосферы. Предполагается, что результаты исследований будут способствовать разработке различных превентивных мероприятий по электромагнитной защите радиоэлектронной аппаратуры обсерватории.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Коллективные процессы в космической плазме
Аspects of electromagnetic compatibility at remote sensing of ionosphere in radiophysical observatory of Кharkiv National University
Аспекти електромагнітної сумісності при дистанційному зондуванні іоносфери в радіофізичній обсерваторії Харківського національного університету
Аспекты электромагнитной совместимости при ионосферном дистанционном зондировании в радиофизической обсерватории Харьковского национального университета
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Аspects of electromagnetic compatibility at remote sensing of ionosphere in radiophysical observatory of Кharkiv National University
spellingShingle Аspects of electromagnetic compatibility at remote sensing of ionosphere in radiophysical observatory of Кharkiv National University
Magda, I.I.
Chernogor, L.F.
Коллективные процессы в космической плазме
title_short Аspects of electromagnetic compatibility at remote sensing of ionosphere in radiophysical observatory of Кharkiv National University
title_full Аspects of electromagnetic compatibility at remote sensing of ionosphere in radiophysical observatory of Кharkiv National University
title_fullStr Аspects of electromagnetic compatibility at remote sensing of ionosphere in radiophysical observatory of Кharkiv National University
title_full_unstemmed Аspects of electromagnetic compatibility at remote sensing of ionosphere in radiophysical observatory of Кharkiv National University
title_sort аspects of electromagnetic compatibility at remote sensing of ionosphere in radiophysical observatory of кharkiv national university
author Magda, I.I.
Chernogor, L.F.
author_facet Magda, I.I.
Chernogor, L.F.
topic Коллективные процессы в космической плазме
topic_facet Коллективные процессы в космической плазме
publishDate 2018
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Аспекти електромагнітної сумісності при дистанційному зондуванні іоносфери в радіофізичній обсерваторії Харківського національного університету
Аспекты электромагнитной совместимости при ионосферном дистанционном зондировании в радиофизической обсерватории Харьковского национального университета
description Specific responses of radio receivers of various type and frequency range under conditions to receiving of both a sole intense ultrashort signals and combination of information and interference ultrashort signals are studied. A possible scenario of functional upset of radio receivers at the V.N. Karazin Kharkiv National University Radiophysical Observatory during remotely sensing the ionosphere with new radar transmitting a few hundred MW ~10 ns pulse has been analyzed. In the tests of receivers, the characteristics of interference signals well enough meet the conditions of planned experiments to probe the ionosphere. It is expected that the research results will contribute to the development of various preventive measures for the electromagnetic protection of the radio facilities at the Radiophysical Observatory. Досліджуються характерні види реакції радіоприймальних пристроїв різних типів і частотного діапазону в умовах прийому інтенсивних сигналів надкороткої тривалості, а також в умовах комбінованого прийому інформаційних сигналів і перешкоджаючих сигналів надкороткої тривалості. Проведено аналіз можливого сценарію збоїв радіоприймальних пристроїв радіофізичної обсерваторії ХНУ в умовах сеансу дистанційного радіозондування іоносфери, в якому використовується нове обладнання з імпульсною потужністю до декількох сотень мегават і тривалістю імпульсу близько 10 нс. У тестах приймальних пристроїв використані характеристики перешкоджаючих сигналів, які досить повно відображають можливі умови передбачуваних експериментів з радіозондування іоносфери. Передбачається, що результати досліджень будуть сприяти розробці різних превентивних заходів щодо електромагнітного захисту радіоелектронної апаратури обсерваторії. Исследуются характерные виды реакций радиоприемных устройств различных типов и частотного диапазона в условиях приема интенсивных сигналов сверхкороткой длительности, а также в условиях комбинированного приема информационных сигналов и помеховых сигналов сверхкороткой длительности. Проведен анализ возможного сценария сбоев радиоприемных устройств радиофизической обсерватории ХНУ в условиях сеанса дистанционного радиозондирования ионосферы, в котором используется новое оборудование с импульсной мощностью до нескольких сотен мегаватт и длительностью импульса около 10 нс. В тестах приемных устройств использованы характеристики помеховых сигналов, которые достаточно полно отражают возможные условия предполагаемых экспериментов по радиозондированию ионосферы. Предполагается, что результаты исследований будут способствовать разработке различных превентивных мероприятий по электромагнитной защите радиоэлектронной аппаратуры обсерватории.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/147347
citation_txt Аspects of electromagnetic compatibility at remote sensing of ionosphere in radiophysical observatory of Кharkiv National University / I.I. Magda, L.F. Chernogor // Вопросы атомной науки и техники. — 2018. — № 4. — С. 122-126. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT magdaii aspectsofelectromagneticcompatibilityatremotesensingofionosphereinradiophysicalobservatoryofkharkivnationaluniversity
AT chernogorlf aspectsofelectromagneticcompatibilityatremotesensingofionosphereinradiophysicalobservatoryofkharkivnationaluniversity
AT magdaii aspektielektromagnítnoísumísnostípridistancíinomuzonduvannííonosferivradíofízičníiobservatorííharkívsʹkogonacíonalʹnogouníversitetu
AT chernogorlf aspektielektromagnítnoísumísnostípridistancíinomuzonduvannííonosferivradíofízičníiobservatorííharkívsʹkogonacíonalʹnogouníversitetu
AT magdaii aspektyélektromagnitnoisovmestimostipriionosfernomdistancionnomzondirovaniivradiofizičeskoiobservatoriiharʹkovskogonacionalʹnogouniversiteta
AT chernogorlf aspektyélektromagnitnoisovmestimostipriionosfernomdistancionnomzondirovaniivradiofizičeskoiobservatoriiharʹkovskogonacionalʹnogouniversiteta
first_indexed 2025-11-25T23:55:25Z
last_indexed 2025-11-25T23:55:25Z
_version_ 1850589538136621056
fulltext ISSN 1562-6016. ВАНТ. 2018. №4(116) 122 ASPECTS OF ELECTROMAGNETIC COMPATIBILITY AT REMOTE SENSING OF IONOSPHERE IN RADIOPHYSICAL OBSERVATORY OF KHARKIV NATIONAL UNIVERSITY I.I. Magda1, L.F. Chernogor2 1National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; E-mail: magda@kipt.kharkov.ua; 2V.N. Karazin Kharkiv National University, Kharkov, Ukraine E-mail: leonid.f.chernogor@univer.kharkov.ua Specific responses of radio receivers of various type and frequency range under conditions to receiving of both a sole intense ultrashort signals and combination of information and interference ultrashort signals are studied. A pos- sible scenario of functional upset of radio receivers at the V.N. Karazin Kharkiv National University Radiophysical Observatory during remotely sensing the ionosphere with new radar transmitting a few hundred MW ~10 ns pulse has been analyzed. In the tests of receivers, the characteristics of interference signals well enough meet the condi- tions of planned experiments to probe the ionosphere. It is expected that the research results will contribute to the development of various preventive measures for the electromagnetic protection of the radio facilities at the Radio- physical Observatory. PACS: 84.40, 94.05, 94.406 INTRODUCTION For successful implementation of the scientific pro- ject "Ionosat-Micro" [1], set by the National Target- Oriented Scientific and Technical Space Program of Ukraine for 2013-2017, the ground-based sub-satellite monitoring of the geospace environment with the re- mote sensing facilities located at the V.N. Karazin Kharkiv National University (KhNU) Radiophysical Observatory (RPO) has been planned [2], which re- quired a metrological verification and certification of the instruments. This work was accompanied by a de- tailed investigating an impact of different radio elec- tronic systems (RES) on radio receivers. On-site meas- urements were preceded by vast laboratory studying the electromagnetic fields impact on radio receivers (RR) and their components. The work was carried on within the framework of well-known and described in scientific literature methods of electromagnetic compatibility and strength (EMCS) against the impact of stationary or rela- tively long-pulse interference (see, for example, [3 - 5]). The present work aims at analyzing a possible sce- nario of the RRs functional upset during a new cycle of remote radio sensing of the ionosphere at the KhNU RFO. A modernized multi-purpose UHF sensing system based on the UHF radar has been proposed to be used in these experiments. This up-grade supposes providing a pulse compression in the master oscillator in order to increase its pulse power to several hundred megawatts. In this case, the pulse width should be reduced from 1 μs to 10 ns. In this concern, the investigation of the RRs response to the impact of ultrashort pulse (USP) ~0.1…10 ns [6 - 8] interference, which previously had not been carried out due to the lack of technical means, becomes relevant. It is known that under the impact of interference sig- nals (IS), depending on their amplitude, a wide spec- trum of phenomena (from functional upset to total fail- ure) arises in the RR operation caused by changes in the characteristics of the components. At the same time, if the interference is the USP signal with the pulse width τp and pulse rise time τr of 10-9…10 8 s and 10-10…10-11 s, respectively, the character of the arising effects is sig- nificantly different in comparison with the steady-state or long-pulse impact [9 - 12]. The specific responses of the receivers of different type and in different frequency ranges irradiated by the USP IS either solely or in combination with the RF in- formation signal (IFS) are presented below. The selec- tion of types of the receivers, as well as of the test sig- nals characteristics quite fully reflects the conditions that can arise in the planned experiments on radio prob- ing the ionosphere. The test results can be useful for providing the preventive technical and organizational measures for electromagnetic protection of the RES, which operate in the KhNU Radiophysical Observatory. 1. BRIEF INFORMATION OF THE KHNU RADIOPHYSICAL OBSERVATORY From the beginning of the 1950s to the present time, the geospace researches have been carried out at KhNU (see, for example, [13 - 15]). Since the 1960s, the Radi- ophysical Observatory equipped with automated and computerized systems for remote sensing the geospace environment in a wide range of altitudes (z ≈ 60...1000 km) had been put into operation. A com- plex investigation along with modeling, and predicting the fundamental geospace physical and chemical pro- cesses of natural and anthropogenic origin (which can affect on functional stability of the telecommunication, power and machinery systems as well as on human health and wellbeing, etc.) have been run in the frame- work of ground support for the scientific project "Iono- sat-Micro" [1]. The facilities for remote radio-sensing the ionosphere has been continuously improved and upgraded. The Facility for Remote Sensing the Near- Earth Space Environment at the Kharkiv V. N. Karazin National University Radiophysical Observatory is in- cluded in the State Register of Scientific Research In- struments that Constitute a National Asset. Table 1 pre- sents a brief description of the receiving devices includ- ed into basic tools of the remote radio-sensing of the ionosphere [2] in RPO. mailto:magda@kipt.kharkov.ua mailto:leonid.f.chernogor@univer.kharkov.ua ISSN 1562-6016. ВАНТ. 2018. №4(116) 123 Table 1 Characteristics of the receivers in the radio systems at the RPO System Radio frequency band (bandwidth) Critical level, Uin MF radar 1.5…24 MHz (40 kHz) 0.02…0.2 HF Doppler radar at vertical incidence 1…24 MHz (10 Hz) 0.02…0.05 Digisonde 1…15 MHz (1…16 kHz) 0.05…0.1 Multi- frequency pas- sive radar 3…30 MHz (300 Hz), 30…300 MHz, 300…3000 MHz, 3…30 GHz (10 kHz) 0.02…0.05 Fluxgate magne- tometer (based on IM-II magnetometer) 0.001…1 Hz 10…100 nТ GPS/GLONASS receivers 150/400 MHz 1.2…1.6 GHz 0.01…0.03 0.003…0.03 * special fabrication 2. RF POWER AT THE INPUT OF THE RECEIVER DISPOSED CLOSE TO HIGH-POWER RADIATOR The supposed interference signal levels produced by radar with the RF power output of 100 MW have be estimated for various distances and decrease factors as a function of the antenna directivity. It is well known, the RF power at the input of the receiving antenna is ( ) 2 24 T R in T G GP P R λ = π , where PT is the transmitter power, GT and GR are the transmitting and receiving antenna gains, respectively, λ is the wave-length, R is the distance between the antennas. Table 2 Power Pin (top line, W) and voltage Uin (bottom line, V) at receiver input (Rin=75 Ω) versus the distance to and side-lobe levels of transmitting antenna GT dB R, m 15 45 150 450 1500 0 3.2⋅106 2.2⋅104 3.2⋅105 6.9⋅103 3.2⋅104 2.2⋅103 3.2⋅103 690 320 220 –10 3.2⋅105 6.9⋅103 3.2⋅104 2.2⋅103 3.2⋅103 690 3.2⋅102 220 32 69 –20 3.2⋅104 2.2⋅103 3.2⋅103 690 3.2⋅102 220 3.2⋅101 69 3.2 22 –30 3.2⋅103 690 3.2⋅102 220 3.2⋅101 69 3.2 22 0.32 6.9 –40 3.2⋅102 220 3.2⋅101 69 3.2 22 0.32 6.9 3.2⋅10–2 2.2 –50 3.2⋅101 69 3.2 22 0.32 6.9 3.2⋅10–2 2.2 3.2⋅10–3 0.69 The amplitudes of the power Pin (and voltage Uin) at the receiver input with the input resistance Rin calculated for PT = 0.1 GW, GT = 5.104, GR = 1, Rin = 75 Ω, and λ = 0.15 m are given in Table 2. Apparently, such high impulse amplitudes at the RR input are sufficiently higher than those indicated in Table 1, and can result in functional upsets and even destruction. To better under- stand possible effects in receiving devices of the Obser- vatory, the results of laboratory tests of various types of receivers on functional upset under the exposure to the USP IS are described below. Table 3 Test conditions of receivers of different frequency bands Test signals mode Receiver frequency band Test signals characteristics τp/τr, ns Uin , V I,а I,b UWB VP or transient pro- cess HF, UHF, VHF, SHF 1…500/ 0.3…20 1…5/0.2…1 10–6…10 10–4…100 II NB RF in frequency band of RR SHF 6…15/3 10–4…20 III Combination NB RF and UWB VP with 5 ns delay time between signals HF/UHF, VHF, SHF NB RF 15/3 UWB VP 1.2/0.2 10–3…10 10–3…10 3. EXPERIMENTAL STUDY OF FUNCTIONAL UPSETS IN RECEIVERS AFFECTED BY USP IS From the above, it follows that the efficiency of the USP interference should depend substantially on the time (frequency) characteristics of IS and the receiving circuit. This has been studied in the tests of RRs, which had significantly different frequency bandwidth of the input components [16 - 18]. For this purpose, conven- tional HF, UHF, and VHF receivers, as well as mock- ups of SHF receivers have been used (Fig. 1). Fig. 1. Diagram of RR test: 1 – G4-116 signal genera- tor; 2 – G5-78 impulse generator; 3 – impulse genera- tor G5-54; 4-5 – 30 dB attenuator; 5 – RR under test; 6 – S1-70 sampling oscilloscope; 7 – personal computer In the first case, the RRs had a narrow input fre- quency band due to the presence of a resonant tunable input RF circuit. In the second case, the input filters were removed in a RR, and the bandwidth of the receiv- ing circuit was determined mainly by the properties of the low-noise amplifier (LNA), which usually has slightly varying characteristics over a wide (up to sever- al octaves) frequency range. The test conditions of the receivers differed in the signal composition – the combinations of RF harmonics and USP signals, as well as in the USP IS mode (Ta- ble 3). The modulated narrowband harmonics signals (NB RF) played the role of the IFS. The ultra-wideband video pulse (UWB VP) signals simulated the USP IS. The difference in the UWB VP signals was determined mainly by the pulse and rise-time durations. Thus, the following signals were applied to the input of the radio receiver units: (1) NB RF with Δf << f0; (2) UWB VP with Δf ~ f0; (3) combined NB RF and UWB VP. ISSN 1562-6016. ВАНТ. 2018. №4(116) 124 3.1. RF RECEIVER RESPONSE In view of the fact that different NB receivers in HF, UHF, and VHF bands have identical responses to the IS, the test of a conventional 3rd-class R-323M receiver is considered below as an example. The RR test was car- ried out using a close-type test-bed in conditions of di- rect injection of USP IS and IFS to the RR input, Fig. 1. The specific characteristics of the RR output signals were determined, which corresponded to the nonlinear response of the device (see Table 3, mode I,a): (1) the RR nonlinear response width τres at the output of the units: RFA, IFA, and LF; (2) the minimum width of the USP IS τp min, when the impact on RR can be interpreted as a shock-like, producing a specific nonlinear response; (3) the critical repetition frequency of the USP IS, Fr cr, when the individual responses at the RR output are overlapped and perceived as a continuous signal (recep- tion blocking). а 50 ns/div b 0.05 ms/div c 1 ms/div Fig. 2. Typical responses of the output units of HF/UHF band RRs: (а) HFA, (b) IFA, (с) LFA in the modes of single IS (а and b), and combination of IS and IFS (с). IFS (f0 = 22 MHz, AM, FАM = 1 kHz), USP IS (τp = 5 ns, τr= 0.45 ns, Fr = 1 kHz) Fig. 2 demonstrates the response at the receiver HF, UHF, and VHF units (a − HFA, b − IFA, and c − LFA) obtained in the mode of single IS, Fig. 2,a,b), and of combination of IS and IFS, Fig. 2,b. The IFC was a con- tinuous harmonic signal with the carrier frequency f0 = 22 MHz, and modulation on amplitude at FM = 1 kHz. The IS was a periodically repeating transient process with the pulse width τp = 5 ns, rise-time τr = 0.45 ns, and with an exponent-like decay. The IS repetition frequen- cy, Fr = 1 kHz. 3.2. RF RECEIVER TESTS IN THE ABSENCE OF INFORMATION SIGNAL The character of high-frequency amplifier (HFA) re- sponse. The HFA response to impact of a unipolar vid- eo-USP was qualitatively equal for IS with a wide range of characteristics (Uin i = 0.001…0.1 V, τr = 0.45 ns, and τp = 1…500 ns). The amplitude of the RR response var- ied proportionally to the amplitude of the USP IS im- pact. In this case, the width of the response signals τres was practically unchanged and exceeded τp by more than 100 times. The HFA response to single USP IS with a relatively small amplitude (τp < f0 -1, Uin i < 0.05 V) had the form of damped sinusoid, which is a typical response of high-Q system to shock impact of USP IS with the decrement proportional to the system quality factor (Q ~ 25…30), Fig. 2,a. The period of the sinusoid signal corresponded well to the resonant frequency f0 of the RR input RF circuit. Thus, τres(HFA) ≈ Q/2f0. If the USP IS ampli- tudes was high enough (τp < f0 -1, Uin i > 0.05 V), the shape of the damped sine was distorted, indicating the appearance of nonlinear distortions. Variation in the unipolar USP IS width significantly changed the response envelope. The distortion of the HFA response was determined by the interference of the leading and trailing edges of the impact signal. For τp > τre(HFA), the impact of each edge of the IS had an independent character, so the efficiency of the interfer- ence from each edge was maximum. At smooth varia- tion in the IS width τp, the phase of the response signals from leading and trailing edges could coincide at the time intervals of f0 -1. For different IS widths, when the delay time between the pulse edges (measured in units of the reception frequency f0 -1) were multiples of f0 -1, a minimum(or maximum) efficiency of the impact on the receiver NB reception unit was observed. The intermediate-frequency amplifier (IFA) re- sponse. The dynamics of the IFA response to the impact of short edges of USP IS was qualitatively consistent with the HFA response. The response width of the IFA to IS significantly exceeded the URF response. Fig. 2,b shows the response of the IFA when τp << f0 -1 << τres(HFA). Like the HFA excitation, the IFA response signal envelope suffered irregular changes due to the phase-shifted effect of the leading and trailing edges of the IS for its sufficiently long width, τp > τres(HFA). At the same time, the structure of the response at the IFA output was more complex than at the HFA output. It was distinguished by the presence of 2 components: (i) the response of the IF amplifier with the conversion frequency fint = f0 - fh = 10.7 MHz, where fh is the local oscillator frequency, and (ii) the low-frequency ampli- tude modulation of the signal. Due to a high Q-factor of the IFA unit, its response width τres(IFA) >> τres(HFA) and reached 250 μs. The measured period, ТМ ≈ 80 μs, of the LF modulation of the response corresponded to a frequency that was about a half of the passband fre- quency of the IF amplifier in the mode of the average passband (25 kHz), fM = TM -1 ≈ 1/2∆f(IFA) = 12.5 kHz. The dynamics of the receiver’s low-frequency ampli- fier (LFA) response had significant differences in com- parison with the responses of two previous RR units of HF and IF amplification. Under the impact of a series of USP IS, the LFA output to each of the signals had a characteristic aperiodic response, Fig. 2,c. In this case, the LFA response width was approximately equal to the whole width of the IFA response. An increase in the IS repetition frequency to a value comparable to the maxi- mum frequency of the LFA spectrum led to the overlap of the response-signals and appearance of the LFA per- manent failure. 3.3. COMBINED RECEPTION OF INTERFERENCE AND INFORMATION SIGNALS The effect of USP IS changed significantly when a continuous harmonic IFS and USP IS were received simultaneously (see Table 3, mode III). The tests were ISSN 1562-6016. ВАНТ. 2018. №4(116) 125 carried out in conditions of receiving the amplitude and frequency modulated IFS. The effect of a stationary harmonic IFS (FAM(FM) = 1 kHz) led to the result qualita- tively different from that of previous tests. Briefly, it can be considered as stabilization of the RR operation due to the action of automatic gain control. In this case, the modes of weak and strong IFS differed greatly. If the IFC level at the RR input Uin inf exceeded the noise level Un by 10…15 dB, the AGC suppressed the RR response to repetitive or single USP IS. For typical rela- tion values Uin i/Uin inf = 1000...2000, the interference signal at the IFA output was significantly lower (up to 20 dB) than the information signal. In this case, the RR functional upset did not occur. In the opposite case, when the IFS amplitude Uin inf was below a certain criti- cal level (≤10 dB Un), the action of USP IS resulted in blinding the receiver for the time τres, which is charac- teristic of only a sole USP IS impact. With the same amplitude of the responses to IS and IFS recorded at the RR output (Uout i /Uout inf ≈1), the ratio of the amplitudes of the input signals was high, Uin i /Uin inf =500…2000, see Fig. 2,c. This ratio set the mini- mum IS amplitude, which produced the RR functional upset in the combined mode of receiving the IS and IFS. Large value of the ratio was due to a low spectral power density of the interference in the IFS frequency range, which, because of the large frequency band of the USP IS (up to 2 GHz) did not exceed the level of 10–8 W/MHz. In spite of this, the USP IS energy equiva- lent was very small W = τp(Uin i)2/2Rin ~ 10–14 J in the tests indicating principally high energy efficiency of the USP interference in modern electromagnetic environ- ment. 3.4. TESTS OF SHF RECEIVING UNITS Testing the receivers with the operating frequencies of 2.0, 3.1 and 9.3 GHz affected by USP IS (see Table 3, modes I, b, II and III) showed that the character of their responses were qualitatively consistent with the picture of a functional upset described above, but the structure of the responses turned out to be much more complicated. The parts of the SHF radio-tracts had a modular de- sign and were manufactured as matched strip-lines with installed active and passive elements. At the USP IS amplitude exceeding the level of the RR linear operation mode, the output signal of the low-noise amplifier (LNA) demonstrated a complex nonlinear response. Due to short pulse width of the IS, the dimensional ef- fects in the SHF modules turned out to be significant. This produced a condition for a multiple-path IS coupling to the parts of the radio-tract associated with delays of the reflected signals. In this case, several complex SHF ac- tive parts such as multistage solid-state protective devices (PD) and LNA or vacuum TWT demonstrated the ap- pearance of the output signals with τres >> τp. Fig. 3 demonstrates the RR response (f0 = 9.3 GHz) to USP interference (τp = 1.2 ns, τr = 0.2 ns) at several characteristic points of the SHF radio-tract: panel (a) at the antenna output, panel (b) at the output of the LNA (in linear amplification mode), panel (c) at the output of the LNA (in non-linear amplification mode). As can be seen, there are several time scales (confirmed by spec- tral data) in the fine structure of the responses, indicat- ing a non-stationary character of the signal transmission conditions, multiple scattering, and interference of the signal components in the radio-tract. a b c Fig. 3. The SHF receiver (9.3 GHz) response signals to USP IS (τp= 1.2 ns, τr = 0.2 ns): (a) antenna output; (b) LNA output, linear operation mode; (c) LNA output, non-linear operation mode The detailed analysis of the RR response-signals dy- namics due to the affect of USP IS of various types showed that their complexity was a result of simultaneous development of a number of effects [16]: (i) distortion of the intense input signals when its amplitude was limited in a PD that initiated the excitation of nonlinear oscilla- tions; (ii) non-linear distortions of the UWB impulse sig- nal and excitation of chaotic oscillations, caused by the radio-signal components interacting in the active element. CONCLUSIONS 1. The Kharkiv V. N. Karazin National University Radiophysical Observatory includes a broad set of radar and radio instrumentation. The performance specifica- tions of the instrumentation and the software employing modern signal processing techniques provide verified high temporal resolution measurements required for monitoring the highly variable space atmosphere inter- action region. The Observatory can function both au- tonomously and be successfully used for ground-based support for space missions, and for the scientific project “IonoSat-Micro” in particular. In planned radio-sensing experiments, new radar with characteristics (pulse pow- er of up to several hundred megawatts and pulse width of about 10 ns) can create an extreme electromagnetic environment. Thus, modern metrological verification and certification of remote sensing equipment is re- quired to minimize the radar impact on radio-electronic equipment of the observatory. 2. The laboratory tests of radio receivers of different frequency range have shown that intense ultrashort elec- tromagnetic impulses, due to a high penetrating quality and low upset threshold levels are the most dangerous factor of the modern electromagnetic environment. 3. The efficiency of excitation of nonlinear respons- es in unprotected radio receivers observed even for a small-amplitude interfering USP, is determined by combination of the their temporal and frequency charac- teristics: the pulse width, pulse rise-time, and the repeti- tion frequency for video signals, as well as the carrier frequency for radio signals. 4. Taking into account the features of a receiver re- sponse to USP interference, it is possible to choose cor- rectly the methods and means for the receiver protec- tion, and also to optimize terrestrial layout of complex active radio-frequency electronics, such as, for example, radars for sub-satellite monitoring of geospace and ion- osphere sensing. ISSN 1562-6016. ВАНТ. 2018. №4(116) 126 REFERENCES 1. «Ionosat-Micro» space project / General editor O.P. Fedorov, scientific editor L.F. Chernogor. Kyiv.: “Akademperiodika”, 2013, 218 p. (in Russian). 2. L.F. Chernogor, K.P. Garmash, V.A. Podnos, O.F. Tyrnov. V.N. Karazin Kharkiv national univer- sity Radiophysical Observatory is a facility for mon- itoring the ionosphere in space experiments // Space project «Ionosat-Micro». Kyiv.: “Akademperiodi- ka”, 2013, p. 160-182 (in Russian). 3. V.I. Kravchenko, E.А. Bolotov, N.I. Letunova. Radio- electronic means and intense electromagnetic interfer- ence. М.: “Radio I Svyaz”, 1987, 256 p. (in Russian). 4. А. Shwab. Electromagnetic compatibility / General editor I.P. Kuzenina. М.: “Energo-atomizdat”, 1995, 480 p. (in Russian). 5. E. Habiger. Electromagnetic compatibility. Funda- mentals of its provision in technology / Editor B.К. Maksimova. М.: “Energoatom-izdat”, 1995, 304 p. (in Russian) 6. C.E. Baum, W.L. Baker, W.D. Prather, et al. JOLT: A highly directive, very intensive, impulse-like radi- ator // Proceedings of the IEEE. 2004, v. 92, № 7, р. 1097-1109. 7. V. Giri, F.M. Tesche. Classification of Intentional Electromagnetic Environments // IEEE Trans. on EMC. 2004, v. 46, № 3, p. 322-328. 8. IEC 61000-4-35 Electromagnetic compatibility (EMC). Part 4-35. Testing and measurement tech- niques. High power electromagnetic (HPEM) simu- lator compendium. 2009, 92 p. 9. J. Benford. Ed Schamiloglu. High Power Micro- waves, 2-nd ed. by Taylor-Francis Group. New York, London: [s.1], 2008, 531 p. 10. S.B. Bludov, N.P. Gadetskii, K.A. Kravtsov, et al. Generation of high-power ultra-short microwave pulses and their effect on electronic devices // Plasma Physics Reports. 1994, v. 20, № 8, р. 643-647. 11. I.I. Magda, N.P. Gadetskij, G.V. Skachek, et al. Nonlinear Dynamics and Chaos Formation in Sus- ceptible Microwave Receiver Devices Under Ultra- Short Pulsed Interference // LASERS’97 Int. Conf., 1997, New Orleans, USA, р. 216-223. 12. А.А. Vedmidsky, А.D. Antonov. Features of dam- age effect of the nanosecond EMP on various radio- elements (in Russian) // XIII Sci. Tech. Conf. on on protection of structures from damaging action of EMP. Scientific and technical collection of reports. 2000. St-Petersburg, Russia, p. 31-35. 13. L.F. Chernogor. Physics of Earth, Atmosphere, and Geospace from the Standpoint of System Paradigm // Radio Physics and Radio Astronomy. 2003, v. 8, № 1, p. 59-106 (in Russian). 14. L.F. Chernogor. The Earth-atmosphere-geo-space system: main properties and processes // Interna- tional Journal of Remote Sensing. 2011, v. 32, № 11, p. 3199-3218. 15. L.F. Chernogor. Physics of High-Power Radio Emissions in Geospace: Monograph. Kharkiv: Kharkiv V.N. Karazin National University, 2014, 544 p. (in Russian). 16. I.I. Magda, N.P. Gadetskii, G.V. Skachek, et al. Nonlinear dynamics and chaos induction in sensitive MW receiving facilities at USP interference // 7th Int. Crimean Conf. «CriMiCo-97», Sevastopol: “Veber”, 1997, p. 387-390. 17. V.N. Bolotov, S.V. Denisov, I.I. Magda, et al. In- duction of metastable chaos in microwave receiving facilities // Electromagnetic Investigations. Collec- tion of scientific works. Kharkov, 1998. v. 1, № 1, p. 30-46. 18. I.I. Magda, N.P. Gadetskii, A.M. Polyakov, et al. Functional upsets in receiving facilities at impact of USP interference // 1-st All-Russian Sci. Conf. Ul- trawide-band Signals in radar and acoustics tech- nique. Murom, Russia. 2003, p. 386-391. Article received 04.06.2018 АСПЕКТЫ ЭЛЕКТРОМАГНИТНОЙ СОВМЕСТИМОСТИ ПРИ ИОНОСФЕРНОМ ДИСТАНЦИОННОМ ЗОНДИРОВАНИИ В РАДИОФИЗИЧЕСКОЙ ОБСЕРВАТОРИИ ХАРЬКОВСКОГО НАЦИОНАЛЬНОГО УНИВЕРСИТЕТА И.И. Магда, Л.Ф. Черногор Исследуются характерные виды реакций радиоприемных устройств различных типов и частотного диапазона в условиях приема интенсивных сигналов сверхкороткой длительности, а также в условиях комбинированного приема информационных сигналов и помеховых сигналов сверхкороткой длительности. Проведен анализ возможного сценария сбоев радиоприемных устройств радиофизической обсерватории ХНУ в условиях сеанса дистанционного радиозондирования ионосферы, в котором используется новое оборудование с импульсной мощностью до нескольких сотен мегаватт и длительностью импульса около 10 нс. В тестах приемных устройств использованы характеристики помеховых сигналов, которые достаточно полно отражают возможные условия предполагаемых экспериментов по радиозондированию ионосферы. Предполагается, что результаты исследований будут способствовать разработке различных превентивных мероприятий по электромагнит- ной защите радиоэлектронной аппаратуры обсерватории. АСПЕКТИ ЕЛЕКТРОМАГНІТНОЇ СУМІСНОСТІ ПРИ ДИСТАНЦІЙНОМУ ЗОНДУВАННІ ІОНОСФЕРИ В РАДІОФІЗИЧНІЙ ОБСЕРВАТОРІЇ ХАРКІВСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ І.І. Магда, Л.Ф. Черногор Досліджуються характерні види реакції радіоприймальних пристроїв різних типів і частотного діапазону в умовах при- йому інтенсивних сигналів надкороткої тривалості, а також в умовах комбінованого прийому інформаційних сигналів і перешкоджаючих сигналів надкороткої тривалості. Проведено аналіз можливого сценарію збоїв радіоприймальних при- строїв радіофізичної обсерваторії ХНУ в умовах сеансу дистанційного радіозондування іоносфери, в якому використову- ється нове обладнання з імпульсною потужністю до декількох сотень мегават і тривалістю імпульсу близько 10 нс. У тестах приймальних пристроїв використані характеристики перешкоджаючих сигналів, які досить повно відображають можливі умови передбачуваних експериментів з радіозондування іоносфери. Передбачається, що результати досліджень будуть сприяти розробці різних превентивних заходів щодо електромагнітного захисту радіоелектронної апаратури обсерваторії. https://www.researchgate.net/researcher/2045551452_S_B_Bludov https://www.researchgate.net/researcher/2005151082_N_P_Gadetskii https://www.researchgate.net/researcher/30712345_K_A_Kravtsov https://www.researchgate.net/researcher/2005151082_N_P_Gadetskii https://www.researchgate.net/researcher/2005151082_N_P_Gadetskii Test signals characteristics I,а II 3.4. Tests of SHF receiving units 12. А.А. Vedmidsky, А.D. Antonov. Features of damage effect of the nanosecond EMP on various radio-elements (in Russian) // XIII Sci. Tech. Conf. on on protection of structures from damaging action of EMP. Scientific and technical collection of report... АСПЕКТЫ ЭЛЕКТРОМАГНИТНОЙ СОВМЕСТИМОСТИ ПРИ ИОНОСФЕРНОМ ДИСТАНЦИОННОМ ЗОНДИРОВАНИИ В РАДИОФИЗИЧЕСКОЙ ОБСЕРВАТОРИИ ХарьковскОГО национальнОГО университетА И.И. Магда, Л.Ф. Черногор АСПЕКТи ЕЛЕКТРОМАГНІТНОЇ Сумісності ПРИ ДИСТАНЦІЙНОМУ ЗОНДуванні ІОНОСФЕРИ В радіофізичній Обсерваторії ХаркІвськОГО національнОГО університету І.І. Магда, Л.Ф. Черногор Досліджуються характерні види реакції радіоприймальних пристроїв різних типів і частотного діапазону в умовах прийому інтенсивних сигналів надкороткої тривалості, а також в умовах комбінованого прийому інформаційних сигналів і перешкоджаючих сигналів ...