Researching of ozone decay dinamics in different technological conditions
The ozone decay dynamics in the working camera, previously filled with an ozone-air mixture, is studied experimentally and theoretically. For different initial concentration at the inlet to the camera and the experimental conditions, several cases were considered: with empty camera, filled with poly...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2018 |
| Автори: | , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147355 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Researching of ozone decay dinamics in different technological conditions / V.I. Golota, G.V. Taran, О.V. Manuilenko, А.А. Zamuriev, Yu.V. Sitnikova, P.O. Opalev // Вопросы атомной науки и техники. — 2018. — № 4. — С. 181-184. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147355 |
|---|---|
| record_format |
dspace |
| spelling |
Golota, V.I. Taran, G.V. Manuilenko, О.V. Zamuriev, А.А. Sitnikova, Yu.V. Opalev, P.O. 2019-02-14T14:29:12Z 2019-02-14T14:29:12Z 2018 Researching of ozone decay dinamics in different technological conditions / V.I. Golota, G.V. Taran, О.V. Manuilenko, А.А. Zamuriev, Yu.V. Sitnikova, P.O. Opalev // Вопросы атомной науки и техники. — 2018. — № 4. — С. 181-184. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 52.75.-d, 52.77.-j, 52.80.Hc, 52.90.+z https://nasplib.isofts.kiev.ua/handle/123456789/147355 The ozone decay dynamics in the working camera, previously filled with an ozone-air mixture, is studied experimentally and theoretically. For different initial concentration at the inlet to the camera and the experimental conditions, several cases were considered: with empty camera, filled with polystyrene foam by 30% and filled with metal by 30 and 50%. The dependence of ozone concentration in the camera on time and experimental parameters, taking into account its internal surface area is obtained. It is shown that the rate of ozone decay in the working camera is affected both by the mechanism of its destruction in the gas, and by the decay on the inner surface of the camera, as well as by the material of the camera filling. Експериментально і теоретично досліджена динаміка розпаду озону в робочій камері, яка попередньо була заповнена озоно-повітряною сумішшю. Для різних значень початкової концентрації на вході в камеру і умов експерименту були розглянуті кілька випадків: з порожньою камерою, заповненою пінополістиролом на 30% і заповненою металевою стружкою на 30 і 50%. Отримано залежність концентрації озону в камері від часу і параметрів експерименту, враховуючи її площу внутрішньої поверхні. Показано, що на швидкість розпаду озону в робочій камері впливають як механізм його деструкції в газі, так і розпад на внутрішній поверхні камери, а також матеріал заповнення камери. Экспериментально и теоретически исследована динамика распада озона в рабочей камере, предварительно заполненной озоно-воздушной смесью. Для различных значений начальной концентрации на входе в камеру и условий эксперимента были рассмотрены несколько случаев: с пустой камерой, заполненной пенополистиролом на 30% и заполненной металлической стружкой на 30 и 50%. Получена зависимость концентрации озона в камере от времени и параметров эксперимента, учитывая ее площадь внутренней поверхности. Показано, что на скорость распада озона в рабочей камере влияют как механизм его деструкции в газе, так и распад на внутренней поверхности камеры, а также материал заполнения камеры. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Плазменно-пучковый разряд, газовый разряд и плазмохимия Researching of ozone decay dinamics in different technological conditions Дослідження кінетики розпаду озону в різних технологічних умовах Исследования динамики распада озона при различных технологических условиях Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Researching of ozone decay dinamics in different technological conditions |
| spellingShingle |
Researching of ozone decay dinamics in different technological conditions Golota, V.I. Taran, G.V. Manuilenko, О.V. Zamuriev, А.А. Sitnikova, Yu.V. Opalev, P.O. Плазменно-пучковый разряд, газовый разряд и плазмохимия |
| title_short |
Researching of ozone decay dinamics in different technological conditions |
| title_full |
Researching of ozone decay dinamics in different technological conditions |
| title_fullStr |
Researching of ozone decay dinamics in different technological conditions |
| title_full_unstemmed |
Researching of ozone decay dinamics in different technological conditions |
| title_sort |
researching of ozone decay dinamics in different technological conditions |
| author |
Golota, V.I. Taran, G.V. Manuilenko, О.V. Zamuriev, А.А. Sitnikova, Yu.V. Opalev, P.O. |
| author_facet |
Golota, V.I. Taran, G.V. Manuilenko, О.V. Zamuriev, А.А. Sitnikova, Yu.V. Opalev, P.O. |
| topic |
Плазменно-пучковый разряд, газовый разряд и плазмохимия |
| topic_facet |
Плазменно-пучковый разряд, газовый разряд и плазмохимия |
| publishDate |
2018 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Дослідження кінетики розпаду озону в різних технологічних умовах Исследования динамики распада озона при различных технологических условиях |
| description |
The ozone decay dynamics in the working camera, previously filled with an ozone-air mixture, is studied experimentally and theoretically. For different initial concentration at the inlet to the camera and the experimental conditions, several cases were considered: with empty camera, filled with polystyrene foam by 30% and filled with metal
by 30 and 50%. The dependence of ozone concentration in the camera on time and experimental parameters, taking
into account its internal surface area is obtained. It is shown that the rate of ozone decay in the working camera is
affected both by the mechanism of its destruction in the gas, and by the decay on the inner surface of the camera, as
well as by the material of the camera filling.
Експериментально і теоретично досліджена динаміка розпаду озону в робочій камері, яка попередньо
була заповнена озоно-повітряною сумішшю. Для різних значень початкової концентрації на вході в камеру і
умов експерименту були розглянуті кілька випадків: з порожньою камерою, заповненою пінополістиролом
на 30% і заповненою металевою стружкою на 30 і 50%. Отримано залежність концентрації озону в камері
від часу і параметрів експерименту, враховуючи її площу внутрішньої поверхні. Показано, що на швидкість
розпаду озону в робочій камері впливають як механізм його деструкції в газі, так і розпад на внутрішній
поверхні камери, а також матеріал заповнення камери.
Экспериментально и теоретически исследована динамика распада озона в рабочей камере, предварительно заполненной озоно-воздушной смесью. Для различных значений начальной концентрации на входе в камеру и условий эксперимента были рассмотрены несколько случаев: с пустой камерой, заполненной пенополистиролом на 30% и заполненной металлической стружкой на 30 и 50%. Получена зависимость концентрации озона в камере от времени и параметров эксперимента, учитывая ее площадь внутренней поверхности. Показано, что на скорость распада озона в рабочей камере влияют как механизм его деструкции в газе,
так и распад на внутренней поверхности камеры, а также материал заполнения камеры.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147355 |
| citation_txt |
Researching of ozone decay dinamics in different technological conditions / V.I. Golota, G.V. Taran, О.V. Manuilenko, А.А. Zamuriev, Yu.V. Sitnikova, P.O. Opalev // Вопросы атомной науки и техники. — 2018. — № 4. — С. 181-184. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT golotavi researchingofozonedecaydinamicsindifferenttechnologicalconditions AT tarangv researchingofozonedecaydinamicsindifferenttechnologicalconditions AT manuilenkoov researchingofozonedecaydinamicsindifferenttechnologicalconditions AT zamurievaa researchingofozonedecaydinamicsindifferenttechnologicalconditions AT sitnikovayuv researchingofozonedecaydinamicsindifferenttechnologicalconditions AT opalevpo researchingofozonedecaydinamicsindifferenttechnologicalconditions AT golotavi doslídžennâkínetikirozpaduozonuvríznihtehnologíčnihumovah AT tarangv doslídžennâkínetikirozpaduozonuvríznihtehnologíčnihumovah AT manuilenkoov doslídžennâkínetikirozpaduozonuvríznihtehnologíčnihumovah AT zamurievaa doslídžennâkínetikirozpaduozonuvríznihtehnologíčnihumovah AT sitnikovayuv doslídžennâkínetikirozpaduozonuvríznihtehnologíčnihumovah AT opalevpo doslídžennâkínetikirozpaduozonuvríznihtehnologíčnihumovah AT golotavi issledovaniâdinamikiraspadaozonaprirazličnyhtehnologičeskihusloviâh AT tarangv issledovaniâdinamikiraspadaozonaprirazličnyhtehnologičeskihusloviâh AT manuilenkoov issledovaniâdinamikiraspadaozonaprirazličnyhtehnologičeskihusloviâh AT zamurievaa issledovaniâdinamikiraspadaozonaprirazličnyhtehnologičeskihusloviâh AT sitnikovayuv issledovaniâdinamikiraspadaozonaprirazličnyhtehnologičeskihusloviâh AT opalevpo issledovaniâdinamikiraspadaozonaprirazličnyhtehnologičeskihusloviâh |
| first_indexed |
2025-11-25T23:28:43Z |
| last_indexed |
2025-11-25T23:28:43Z |
| _version_ |
1850581452085788672 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2018. №4(116) 181
RESEARCHING OF OZONE DECAY DINAMICS IN DIFFERENT
TECHNOLOGICAL CONDITIONS
V.I. Golota, G.V. Taran, О.V. Manuilenko, А.А. Zamuriev, Yu.V. Sitnikova, P.O. Opalev
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: tarang@kipt.kharkov.ua
The ozone decay dynamics in the working camera, previously filled with an ozone-air mixture, is studied exper-
imentally and theoretically. For different initial concentration at the inlet to the camera and the experimental condi-
tions, several cases were considered: with empty camera, filled with polystyrene foam by 30% and filled with metal
by 30 and 50%. The dependence of ozone concentration in the camera on time and experimental parameters, taking
into account its internal surface area is obtained. It is shown that the rate of ozone decay in the working camera is
affected both by the mechanism of its destruction in the gas, and by the decay on the inner surface of the camera, as
well as by the material of the camera filling.
PACS: 52.75.-d, 52.77.-j, 52.80.Hc, 52.90.+z
INTRODUCTION
Ozone is an air environment component. It is a sim-
ple substance consisting of three oxygen atoms. The
natural ozone concentrations in the ambient air usually
vary from 0.002 to 0.02 mg/m3.
Various methods allow synthesize ozone from oxy-
gen-containing substance. In particular, ozone can be
obtained by chemical methods, by means of ultraviolet
radiation, using radioactive radiation in the electrical
discharge. The last method is the most preferable [1].
Ozone is a very active chemical substance, effective-
ly interacts with many toxic and unpleasant smelling
chemical compounds, microbes, bacteria, etc. The ex-
cess ozone amounts are quickly converted into molecu-
lar oxygen as a result of reactions with environment
molecules. In particular, ozone disinfection does not
require subsequent treatment − products washing or
degassing. Exactly these features determine the perspec-
tive of ozone technologies using.
Ozone drastically reduces bactericidal contamination
of surfaces. The ozone use is the most effective in the
treatment of surfaces that are unstable to temperature
treatment, as well as destroyed by acids or alkalis [2].
It should be noted that studies that were carried out
by the Electric Power Research Institute (EPRI, USA)
on order U.S. The Food and Drug Administration
(FDA) obtained that food products, treated by ozone, do
not produce any substances that have a mutagenic or
carcinogenic effect. That’s why the FDA certified the
ozone substance as a disinfectant and sanitizer suitable
for using without any restrictions in the US food indus-
try. It means that ozone is granted the status of "Gener-
ally Recognized as Safe" (GRAS), which opens up wide
opportunities for the use of environmentally friendly gas
mixture that contains ozone, in production [3].
The majority of technological processes with ozone
using occur in closed chamber, therefore, it is important
to study the ozone decay dynamics in this chamber,
which is the purpose of the research in this paper.
THEORY
The ozone decay can be represented in terms of the
simple atomic mechanism [4, 5]:
,2
,
23
23
OOO
MOOMO
O
f
M
f
M
r
k
k
k
⇒
⇔
+
+++
(1)
where M = {N2, O2, H2O, O3, CO2, He, Ar, N2O, includ-
ing surface interaction}. In the equations (1) M
fk and
M
rk are the rate constants of the forward and reverse
reactions and they are different for different М, O
fk is
the rate constant of the second forward reaction. All rate
constants depend on the temperature T.
From the system of equations describing the ozone
decay mechanism, it is easy to get the equation for О3
concentration by using the method of steady-state con-
centrations for O [7, 8]:
,2 2
3
32
3
O
O
O
fM
M
M
rO
M
M
M
f
O
f
O C
CkCkC
Ckk
dt
dC
+
−=
∑
∑
(2)
here MC is a concentration of M.
The equation (2) shows that in general case the О3
decay is described by equations of first or second order,
depending on the experiment parameters. If
3O
O
f Ck » M
M
M
rO CkC ∑2
, then the reaction of ozone
decay becomes the reaction of first order:
M
M
M
fOO CkCdtdC ∑−=
33
2/ . Otherwise, if
3O
O
f Ck
« M
M
M
rO CkC ∑2
, the O3 decay is described by reac-
tions of second order:
2
3
2
3 2 O
M
M
M
rO
M
M
M
f
O
f
O C
CkC
Ckk
dt
dC
∑
∑
−= . (3)
The numerical estimations of expressions
)()( tCTk M
M
M
f∑ and )()( tCTk M
M
M
r∑
show that
they do not depend on time and are defined by the initial
bulk densities of reagents [6]. For experiment parame-
ISSN 1562-6016. ВАНТ. 2018. №4(116) 182
ters the reactions, described ozone decay, are the second
order. The equation (3) can be integrated:
,
21
3
3
3 tkC
C
C in
O
in
O
O +
= (4)
where
,/
2 M
M
M
rOM
M
M
f
O
f CkCCkkk ∑∑=
in
OO CtC
33
)0( ==
is an initial concentration. It corre-
sponds to the following ozone decay scheme:
23 32 OO
k
⇒ , where the effective «reaction rate con-
stant» k depends on the initial densities of nitrogen, wa-
ter and oxygen as well as on the reaction rate constants
which are included in the equations (1).
The ozone decay on the surface can be included in
the equation (3) by integrated the continuity equations
over the volume. After the integration over the container
surface and by introducing the probability of the particle
decay on the surface
3Oγ , the equation (3) can be pre-
sented in the following way:
,2
3333
32
3 2
OOOO
O
O
fM
M
M
rO
M
M
M
f
O
f
O C
V
SC
CkCkC
Ckk
dt
dC
ναγ−
+
−=
∑
∑
(5)
where V is a vessel volume where ozone decay takes
place, S is a surface limiting the volume V,
3Oν
is par-
ticle velocity and α is a coefficient considering the
problem geometry.
For the case of ozone-air mixture by integrating the
equation (5) the solution for )(
3
tCO
can be obtained in
the following way:
.
)]exp(1[1
)exp()(
33
3
at
a
bC
at
C
tC
in
O
in
O
O
−−+
−
= (6)
Here ,2,
33
Kb
V
Sa OO == ναγ
where
32
/ O
O
fM
M
M
rOM
M
M
f
O
f CkCkCCkkK += ∑∑
does not depend on time and is defined by the initial
concentration of reagents. The decay on the walls is
considered by the multiplier )exp( at− .
If assume that abC in
O /
3
»1, what means large initial
ozone concentrations or small surface areas in relation
to the volume, or both at the same time, than the expres-
sion (6) cannot be applied, as it considers that K does
not depend on time and is defined by the initial concen-
trations of reagents. Therefore it should be solved nu-
merically. The case abC in
O /
3
«1 means small initial
ozone concentrations or large surface areas in relation to
the volume, or both at the same time and expression (6)
can be rewritten as:
).exp(/)(
33
atCtC in
OO −≈
Consider the case a«1 taking into consideration that
K does not depend on time, )exp( at− may be expand-
ed:
.
11
1)(
333
3
tbC
at
tbCC
tC
in
O
in
O
in
O
O
+
−
+
≈ (7)
The first term in the right part in expression (6) is
the solution (5) for the ozone decay in the chamber vol-
ume, and the second term defines an influence of the
wall.
Thus, there are two limiting modes of ozone decay
in the chamber. The first mode can be called the surface
dominated ozone decay mode. In this case, ozone con-
centration decreased in accordance with the exponential
law: )exp()(
33
tCtC in
OO δ−≈ , where the exponent is
determined by the surface δ = βS /V. The second mode
can be called the volume dominated ozone decay mode
with )1/()(
33
tCtC in
OO σ+≈ , and the ozone decay is
determined by the decay in the volume.
EXPERIMENT
To study the ozone decay dynamics in the camera, a
stand was designed and manufactured. The experi-
mental stand, schematically presented on Fig. 1, con-
sisted of: Onyx Oxygen Generator (USA) with a capaci-
ty up to 0.6 m3/h with an integrated rotameter, an ozona-
tor station "StreamOzone", consisting of three ozonizers
(total production capacity up to 20 g/h), the ozone meter
Teledyne Instruments (USA) model 454H with an
ozone concentration measuring range 0.1…100 g/m3
and a laboratory camera made from galvanized iron
with volume 320 liters. Also, the gas temperature in the
camera was monitored with an electronic thermometer
TPM-10.
Fig. 1. Experimental stand
To carry out the experiments, a gas mixture, contain-
ing ozone, with different concentrations (10 and
20 g/m3) was fed into the camera. The pumping rate gas
mixture through the camera was 0.30 m3/h. The filling
time was determined by the output of the ozone concen-
tration in the camera to the stationary level. Then, the
ozone-oxygen mixture feeding from the ozonizers was
switched off and every 30 minutes the ozone concentra-
tion in the experimental camera was measured. The re-
sults of experimental studies and theoretical calculations
of the ozone decay dynamics in an empty camera are
shown on Fig. 2. The asymptotic ozone concentration in
the camera with inlet concentration 20 g/m3 was
13 g/m3, and with input concentration 10 g/m3 it was
7.7 g/m3. The time of reaching the asymptotic concen-
tration in the camera was 2h. The theoretical curve was
calculated by the formula (4).
From the graph it can be concluded that the ozone
concentration change in the camera has an exponential
character. The rate of ozone decay depends on its initial
concentration. The difference between the theoretical
and experimental curves is related with the fact that the
calculation did not take into account the ozone decay on
the camera walls.
ISSN 1562-6016. ВАНТ. 2018. №4(116) 183
Fig. 2. Ozone decay dynamics in empty camera
For the next experiment, a 30% volume camera was
filled with polystyrene foam, then closed and filled with
an ozone-air mixture at various concentrations (10 and
20 g/m3). The asymptotic concentration in the camera
with the inlet concentration 20 g/m3 was 7 g/m3, and
with the input concentration 10 g/m3 it was 3.5 g/m3.
The camera filling time was 2 h. Theoretical calculation
of the ozone concentration change dynamics in a camera
filled with polystyrene foam was carried out taking into
account the ozone decay on the surface and was made
using the formula (6). The results of the study are
shown in Fig. 3.
Fig. 3. Ozone decay dynamics for the camera
with polystyrene foam
As can be seen from the graph the presence of poly-
styrene foam in the experimental camera reduces the
initial concentration in volume twice.
For the next experiment, the camera volume was
filled with metal by 30 and 50%. The ozone concentra-
tion in the gas mixture at the camera inlet was 20 g/m3.
The asymptotic ozone concentration in the camera with
30% filling in was 2.5 g/m3, with 50% − 1.5 g/m3. The
camera filling time was 2h. The experimental results of
the ozone concentration change in the camera from time
are presented in Fig. 4.
Fig. 4. Ozone decay dynamics for the camera with metal
The theoretical calculation for this case is compli-
cated because of the complex geometry of the ozone
disintegration surface.
As can be seen from the graph, the presence of metal
significantly increases the surface of ozone decay. This
involves the interaction mechanism of ozone with iron,
which greatly accelerates the decay process.
On the following graph (Fig. 5) the experimental re-
sults of ozone decay in the empty camera, in the camera
filled with expanded polystyrene foam by 30% and in
the camera filled with metal by 30% are presented.
Fig. 5. Ozone decay curves for empty camera,
camera with polystyrene foam and metal
From the analysis of the data presented on the graph,
it can be concluded that the presence of the developed
surface in the working camera significantly (more than
5 times) increases the ozone decay rate.
In the next experiment, the ozone decay dynamics at
different temperatures (10 and 20°C) was studied. The
ozone concentration in the gas mixture at the camera
inlet was 20 g/m3. The asymptotic concentration in the
camera at 10°C was 13 g/m3, and at 20°C it was
8.5 g/m3. The camera filling time was 2h. The experi-
mental results of the ozone concentration change in the
camera from time and the calculated curves are shown
in Fig. 6.
Fig. 6. Ozone decay dynamics at different temperature
From the graph it can be concluded that the higher is
the temperature in the experimental camera, the faster
ozone decays.
CONCLUSIONS
The results of theoretical and experimental study of
the ozone decay dynamics in the experimental chamber
previously filled with the ozone-air mixture are present-
ed. Assuming that ozone decay takes place in a volume
and is described by first-order kinetics, an analytical
expression for the dependence of the ozone concentra-
tion in the camera on time and the problem parameters,
ISSN 1562-6016. ВАНТ. 2018. №4(116) 184
such as the feeding rate of ozone-air mixture to the
camera inlet, the ozone concentration at the camera in-
let, the camera volume and the area of its internal sur-
face is obtained.
The ozone decay dynamics in the camera was exper-
imentally studied with the ozone-air mixture pumping
rate 0.3 m3/h for various ozone concentrations at the
inlet (10 and 20 g/m3). It is shown that the rate of ozone
decay depends on the area of the working camera inner
surface and the objects material placed inside. In this
case, the asymptotic ozone concentration that is gener-
ated in the camera also significantly depends on the area
of the camera inner surface and the filling material.
REFERENCES
1. Yu.V. Filippov, V.A. Voblikova, V.I. Panteleev.
Ozone electrosynthesis. 1987, 237 p.
2. Ozone and other environmentally friendly oxidizers
// The 29th All-Russian Seminar “Science and Tech-
nology”. 1997.
3. Ozone Gets OK For Use in U.S. Food Industry //
EPRI Journal. 1997, v. 22, № 4, p. 3.
4. V.V. Lunin, M.P. Popovich, S.N. Tkachenko. Physi-
cal chemistry of ozone. М.: “MSU Publishing
house”, 1998.
5. S.W. Benson. Bases of chemical kinetics. G.: “Sci-
ence”, 1964.
6. V.I. Golota, О.V. Manuilenko, G.V. Тaran,
А.S. Pismenetskii, А.А. Zamuriev, V.А. Benitskaja,
Yu.V. Dotsenko. Ozone disintegration kinetics in the
reactor for decomposition of tyres // Problems of
Atomic Science and Technology. Series “Plasma
Electronics and New Methods of Acceleration”.
2010, № 4, p. 204-209.
7. V.I. Golota, O.V. Manuilenko, G.V. Taran,
Yu.V. Dotsenko, A.S. Pismenetskii, A.A. Zamuriev,
V.A. Benitskaja. Ozone decay in chemical reactor
for ozone-dynamical disintegration of used tyres //
Problems of Atomic Science and Technology. Series
“Plasma Physics”. 2011, № 1, p. 119-121.
8. O.V. Manuilenko, V.I. Golota. Ozone decay in
chemical reactor with the developed inner surface//
Problems of Atomic Science and Technology. Series
“Plasma Physics”. 2017, № 1, p. 148-151.
Article received 15.06.2018
ИССЛЕДОВАНИЯ ДИНАМИКИ РАСПАДА ОЗОНА ПРИ РАЗЛИЧНЫХ ТЕХНОЛОГИЧЕСКИХ
УСЛОВИЯХ
В.И. Голота, Г.В. Таран, О.В. Мануйленко, А.А. Замуриев, Ю.В. Ситникова, П.О. Опалев
Экспериментально и теоретически исследована динамика распада озона в рабочей камере, предваритель-
но заполненной озоно-воздушной смесью. Для различных значений начальной концентрации на входе в ка-
меру и условий эксперимента были рассмотрены несколько случаев: с пустой камерой, заполненной пено-
полистиролом на 30% и заполненной металлической стружкой на 30 и 50%. Получена зависимость концен-
трации озона в камере от времени и параметров эксперимента, учитывая ее площадь внутренней поверхно-
сти. Показано, что на скорость распада озона в рабочей камере влияют как механизм его деструкции в газе,
так и распад на внутренней поверхности камеры, а также материал заполнения камеры.
ДОСЛІДЖЕННЯ КІНЕТИКИ РОЗПАДУ ОЗОНУ В РІЗНИХ ТЕХНОЛОГІЧНИХ УМОВАХ
В.І. Голота, Г.В. Таран, О.В. Мануйленко, О.О. Замурієв, Ю.В. Сiтнікова, П.О. Опалєв
Експериментально і теоретично досліджена динаміка розпаду озону в робочій камері, яка попередньо
була заповнена озоно-повітряною сумішшю. Для різних значень початкової концентрації на вході в камеру і
умов експерименту були розглянуті кілька випадків: з порожньою камерою, заповненою пінополістиролом
на 30% і заповненою металевою стружкою на 30 і 50%. Отримано залежність концентрації озону в камері
від часу і параметрів експерименту, враховуючи її площу внутрішньої поверхні. Показано, що на швидкість
розпаду озону в робочій камері впливають як механізм його деструкції в газі, так і розпад на внутрішній
поверхні камери, а також матеріал заповнення камери.
|