Researching of ozone decay dinamics in different technological conditions

The ozone decay dynamics in the working camera, previously filled with an ozone-air mixture, is studied experimentally and theoretically. For different initial concentration at the inlet to the camera and the experimental conditions, several cases were considered: with empty camera, filled with poly...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2018
Автори: Golota, V.I., Taran, G.V., Manuilenko, О.V., Zamuriev, А.А., Sitnikova, Yu.V., Opalev, P.O.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147355
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Researching of ozone decay dinamics in different technological conditions / V.I. Golota, G.V. Taran, О.V. Manuilenko, А.А. Zamuriev, Yu.V. Sitnikova, P.O. Opalev // Вопросы атомной науки и техники. — 2018. — № 4. — С. 181-184. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147355
record_format dspace
spelling Golota, V.I.
Taran, G.V.
Manuilenko, О.V.
Zamuriev, А.А.
Sitnikova, Yu.V.
Opalev, P.O.
2019-02-14T14:29:12Z
2019-02-14T14:29:12Z
2018
Researching of ozone decay dinamics in different technological conditions / V.I. Golota, G.V. Taran, О.V. Manuilenko, А.А. Zamuriev, Yu.V. Sitnikova, P.O. Opalev // Вопросы атомной науки и техники. — 2018. — № 4. — С. 181-184. — Бібліогр.: 8 назв. — англ.
1562-6016
PACS: 52.75.-d, 52.77.-j, 52.80.Hc, 52.90.+z
https://nasplib.isofts.kiev.ua/handle/123456789/147355
The ozone decay dynamics in the working camera, previously filled with an ozone-air mixture, is studied experimentally and theoretically. For different initial concentration at the inlet to the camera and the experimental conditions, several cases were considered: with empty camera, filled with polystyrene foam by 30% and filled with metal by 30 and 50%. The dependence of ozone concentration in the camera on time and experimental parameters, taking into account its internal surface area is obtained. It is shown that the rate of ozone decay in the working camera is affected both by the mechanism of its destruction in the gas, and by the decay on the inner surface of the camera, as well as by the material of the camera filling.
Експериментально і теоретично досліджена динаміка розпаду озону в робочій камері, яка попередньо була заповнена озоно-повітряною сумішшю. Для різних значень початкової концентрації на вході в камеру і умов експерименту були розглянуті кілька випадків: з порожньою камерою, заповненою пінополістиролом на 30% і заповненою металевою стружкою на 30 і 50%. Отримано залежність концентрації озону в камері від часу і параметрів експерименту, враховуючи її площу внутрішньої поверхні. Показано, що на швидкість розпаду озону в робочій камері впливають як механізм його деструкції в газі, так і розпад на внутрішній поверхні камери, а також матеріал заповнення камери.
Экспериментально и теоретически исследована динамика распада озона в рабочей камере, предварительно заполненной озоно-воздушной смесью. Для различных значений начальной концентрации на входе в камеру и условий эксперимента были рассмотрены несколько случаев: с пустой камерой, заполненной пенополистиролом на 30% и заполненной металлической стружкой на 30 и 50%. Получена зависимость концентрации озона в камере от времени и параметров эксперимента, учитывая ее площадь внутренней поверхности. Показано, что на скорость распада озона в рабочей камере влияют как механизм его деструкции в газе, так и распад на внутренней поверхности камеры, а также материал заполнения камеры.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Researching of ozone decay dinamics in different technological conditions
Дослідження кінетики розпаду озону в різних технологічних умовах
Исследования динамики распада озона при различных технологических условиях
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Researching of ozone decay dinamics in different technological conditions
spellingShingle Researching of ozone decay dinamics in different technological conditions
Golota, V.I.
Taran, G.V.
Manuilenko, О.V.
Zamuriev, А.А.
Sitnikova, Yu.V.
Opalev, P.O.
Плазменно-пучковый разряд, газовый разряд и плазмохимия
title_short Researching of ozone decay dinamics in different technological conditions
title_full Researching of ozone decay dinamics in different technological conditions
title_fullStr Researching of ozone decay dinamics in different technological conditions
title_full_unstemmed Researching of ozone decay dinamics in different technological conditions
title_sort researching of ozone decay dinamics in different technological conditions
author Golota, V.I.
Taran, G.V.
Manuilenko, О.V.
Zamuriev, А.А.
Sitnikova, Yu.V.
Opalev, P.O.
author_facet Golota, V.I.
Taran, G.V.
Manuilenko, О.V.
Zamuriev, А.А.
Sitnikova, Yu.V.
Opalev, P.O.
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
publishDate 2018
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Дослідження кінетики розпаду озону в різних технологічних умовах
Исследования динамики распада озона при различных технологических условиях
description The ozone decay dynamics in the working camera, previously filled with an ozone-air mixture, is studied experimentally and theoretically. For different initial concentration at the inlet to the camera and the experimental conditions, several cases were considered: with empty camera, filled with polystyrene foam by 30% and filled with metal by 30 and 50%. The dependence of ozone concentration in the camera on time and experimental parameters, taking into account its internal surface area is obtained. It is shown that the rate of ozone decay in the working camera is affected both by the mechanism of its destruction in the gas, and by the decay on the inner surface of the camera, as well as by the material of the camera filling. Експериментально і теоретично досліджена динаміка розпаду озону в робочій камері, яка попередньо була заповнена озоно-повітряною сумішшю. Для різних значень початкової концентрації на вході в камеру і умов експерименту були розглянуті кілька випадків: з порожньою камерою, заповненою пінополістиролом на 30% і заповненою металевою стружкою на 30 і 50%. Отримано залежність концентрації озону в камері від часу і параметрів експерименту, враховуючи її площу внутрішньої поверхні. Показано, що на швидкість розпаду озону в робочій камері впливають як механізм його деструкції в газі, так і розпад на внутрішній поверхні камери, а також матеріал заповнення камери. Экспериментально и теоретически исследована динамика распада озона в рабочей камере, предварительно заполненной озоно-воздушной смесью. Для различных значений начальной концентрации на входе в камеру и условий эксперимента были рассмотрены несколько случаев: с пустой камерой, заполненной пенополистиролом на 30% и заполненной металлической стружкой на 30 и 50%. Получена зависимость концентрации озона в камере от времени и параметров эксперимента, учитывая ее площадь внутренней поверхности. Показано, что на скорость распада озона в рабочей камере влияют как механизм его деструкции в газе, так и распад на внутренней поверхности камеры, а также материал заполнения камеры.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/147355
citation_txt Researching of ozone decay dinamics in different technological conditions / V.I. Golota, G.V. Taran, О.V. Manuilenko, А.А. Zamuriev, Yu.V. Sitnikova, P.O. Opalev // Вопросы атомной науки и техники. — 2018. — № 4. — С. 181-184. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT golotavi researchingofozonedecaydinamicsindifferenttechnologicalconditions
AT tarangv researchingofozonedecaydinamicsindifferenttechnologicalconditions
AT manuilenkoov researchingofozonedecaydinamicsindifferenttechnologicalconditions
AT zamurievaa researchingofozonedecaydinamicsindifferenttechnologicalconditions
AT sitnikovayuv researchingofozonedecaydinamicsindifferenttechnologicalconditions
AT opalevpo researchingofozonedecaydinamicsindifferenttechnologicalconditions
AT golotavi doslídžennâkínetikirozpaduozonuvríznihtehnologíčnihumovah
AT tarangv doslídžennâkínetikirozpaduozonuvríznihtehnologíčnihumovah
AT manuilenkoov doslídžennâkínetikirozpaduozonuvríznihtehnologíčnihumovah
AT zamurievaa doslídžennâkínetikirozpaduozonuvríznihtehnologíčnihumovah
AT sitnikovayuv doslídžennâkínetikirozpaduozonuvríznihtehnologíčnihumovah
AT opalevpo doslídžennâkínetikirozpaduozonuvríznihtehnologíčnihumovah
AT golotavi issledovaniâdinamikiraspadaozonaprirazličnyhtehnologičeskihusloviâh
AT tarangv issledovaniâdinamikiraspadaozonaprirazličnyhtehnologičeskihusloviâh
AT manuilenkoov issledovaniâdinamikiraspadaozonaprirazličnyhtehnologičeskihusloviâh
AT zamurievaa issledovaniâdinamikiraspadaozonaprirazličnyhtehnologičeskihusloviâh
AT sitnikovayuv issledovaniâdinamikiraspadaozonaprirazličnyhtehnologičeskihusloviâh
AT opalevpo issledovaniâdinamikiraspadaozonaprirazličnyhtehnologičeskihusloviâh
first_indexed 2025-11-25T23:28:43Z
last_indexed 2025-11-25T23:28:43Z
_version_ 1850581452085788672
fulltext ISSN 1562-6016. ВАНТ. 2018. №4(116) 181 RESEARCHING OF OZONE DECAY DINAMICS IN DIFFERENT TECHNOLOGICAL CONDITIONS V.I. Golota, G.V. Taran, О.V. Manuilenko, А.А. Zamuriev, Yu.V. Sitnikova, P.O. Opalev National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: tarang@kipt.kharkov.ua The ozone decay dynamics in the working camera, previously filled with an ozone-air mixture, is studied exper- imentally and theoretically. For different initial concentration at the inlet to the camera and the experimental condi- tions, several cases were considered: with empty camera, filled with polystyrene foam by 30% and filled with metal by 30 and 50%. The dependence of ozone concentration in the camera on time and experimental parameters, taking into account its internal surface area is obtained. It is shown that the rate of ozone decay in the working camera is affected both by the mechanism of its destruction in the gas, and by the decay on the inner surface of the camera, as well as by the material of the camera filling. PACS: 52.75.-d, 52.77.-j, 52.80.Hc, 52.90.+z INTRODUCTION Ozone is an air environment component. It is a sim- ple substance consisting of three oxygen atoms. The natural ozone concentrations in the ambient air usually vary from 0.002 to 0.02 mg/m3. Various methods allow synthesize ozone from oxy- gen-containing substance. In particular, ozone can be obtained by chemical methods, by means of ultraviolet radiation, using radioactive radiation in the electrical discharge. The last method is the most preferable [1]. Ozone is a very active chemical substance, effective- ly interacts with many toxic and unpleasant smelling chemical compounds, microbes, bacteria, etc. The ex- cess ozone amounts are quickly converted into molecu- lar oxygen as a result of reactions with environment molecules. In particular, ozone disinfection does not require subsequent treatment − products washing or degassing. Exactly these features determine the perspec- tive of ozone technologies using. Ozone drastically reduces bactericidal contamination of surfaces. The ozone use is the most effective in the treatment of surfaces that are unstable to temperature treatment, as well as destroyed by acids or alkalis [2]. It should be noted that studies that were carried out by the Electric Power Research Institute (EPRI, USA) on order U.S. The Food and Drug Administration (FDA) obtained that food products, treated by ozone, do not produce any substances that have a mutagenic or carcinogenic effect. That’s why the FDA certified the ozone substance as a disinfectant and sanitizer suitable for using without any restrictions in the US food indus- try. It means that ozone is granted the status of "Gener- ally Recognized as Safe" (GRAS), which opens up wide opportunities for the use of environmentally friendly gas mixture that contains ozone, in production [3]. The majority of technological processes with ozone using occur in closed chamber, therefore, it is important to study the ozone decay dynamics in this chamber, which is the purpose of the research in this paper. THEORY The ozone decay can be represented in terms of the simple atomic mechanism [4, 5]: ,2 , 23 23 OOO MOOMO O f M f M r k k k ⇒ ⇔ + +++ (1) where M = {N2, O2, H2O, O3, CO2, He, Ar, N2O, includ- ing surface interaction}. In the equations (1) M fk and M rk are the rate constants of the forward and reverse reactions and they are different for different М, O fk is the rate constant of the second forward reaction. All rate constants depend on the temperature T. From the system of equations describing the ozone decay mechanism, it is easy to get the equation for О3 concentration by using the method of steady-state con- centrations for O [7, 8]: ,2 2 3 32 3 O O O fM M M rO M M M f O f O C CkCkC Ckk dt dC + −= ∑ ∑ (2) here MC is a concentration of M. The equation (2) shows that in general case the О3 decay is described by equations of first or second order, depending on the experiment parameters. If 3O O f Ck » M M M rO CkC ∑2 , then the reaction of ozone decay becomes the reaction of first order: M M M fOO CkCdtdC ∑−= 33 2/ . Otherwise, if 3O O f Ck « M M M rO CkC ∑2 , the O3 decay is described by reac- tions of second order: 2 3 2 3 2 O M M M rO M M M f O f O C CkC Ckk dt dC ∑ ∑ −= . (3) The numerical estimations of expressions )()( tCTk M M M f∑ and )()( tCTk M M M r∑ show that they do not depend on time and are defined by the initial bulk densities of reagents [6]. For experiment parame- ISSN 1562-6016. ВАНТ. 2018. №4(116) 182 ters the reactions, described ozone decay, are the second order. The equation (3) can be integrated: , 21 3 3 3 tkC C C in O in O O + = (4) where ,/ 2 M M M rOM M M f O f CkCCkkk ∑∑= in OO CtC 33 )0( == is an initial concentration. It corre- sponds to the following ozone decay scheme: 23 32 OO k ⇒ , where the effective «reaction rate con- stant» k depends on the initial densities of nitrogen, wa- ter and oxygen as well as on the reaction rate constants which are included in the equations (1). The ozone decay on the surface can be included in the equation (3) by integrated the continuity equations over the volume. After the integration over the container surface and by introducing the probability of the particle decay on the surface 3Oγ , the equation (3) can be pre- sented in the following way: ,2 3333 32 3 2 OOOO O O fM M M rO M M M f O f O C V SC CkCkC Ckk dt dC ναγ− + −= ∑ ∑ (5) where V is a vessel volume where ozone decay takes place, S is a surface limiting the volume V, 3Oν is par- ticle velocity and α is a coefficient considering the problem geometry. For the case of ozone-air mixture by integrating the equation (5) the solution for )( 3 tCO can be obtained in the following way: . )]exp(1[1 )exp()( 33 3 at a bC at C tC in O in O O −−+ − = (6) Here ,2, 33 Kb V Sa OO == ναγ where 32 / O O fM M M rOM M M f O f CkCkCCkkK += ∑∑ does not depend on time and is defined by the initial concentration of reagents. The decay on the walls is considered by the multiplier )exp( at− . If assume that abC in O / 3 »1, what means large initial ozone concentrations or small surface areas in relation to the volume, or both at the same time, than the expres- sion (6) cannot be applied, as it considers that K does not depend on time and is defined by the initial concen- trations of reagents. Therefore it should be solved nu- merically. The case abC in O / 3 «1 means small initial ozone concentrations or large surface areas in relation to the volume, or both at the same time and expression (6) can be rewritten as: ).exp(/)( 33 atCtC in OO −≈ Consider the case a«1 taking into consideration that K does not depend on time, )exp( at− may be expand- ed: . 11 1)( 333 3 tbC at tbCC tC in O in O in O O + − + ≈ (7) The first term in the right part in expression (6) is the solution (5) for the ozone decay in the chamber vol- ume, and the second term defines an influence of the wall. Thus, there are two limiting modes of ozone decay in the chamber. The first mode can be called the surface dominated ozone decay mode. In this case, ozone con- centration decreased in accordance with the exponential law: )exp()( 33 tCtC in OO δ−≈ , where the exponent is determined by the surface δ = βS /V. The second mode can be called the volume dominated ozone decay mode with )1/()( 33 tCtC in OO σ+≈ , and the ozone decay is determined by the decay in the volume. EXPERIMENT To study the ozone decay dynamics in the camera, a stand was designed and manufactured. The experi- mental stand, schematically presented on Fig. 1, con- sisted of: Onyx Oxygen Generator (USA) with a capaci- ty up to 0.6 m3/h with an integrated rotameter, an ozona- tor station "StreamOzone", consisting of three ozonizers (total production capacity up to 20 g/h), the ozone meter Teledyne Instruments (USA) model 454H with an ozone concentration measuring range 0.1…100 g/m3 and a laboratory camera made from galvanized iron with volume 320 liters. Also, the gas temperature in the camera was monitored with an electronic thermometer TPM-10. Fig. 1. Experimental stand To carry out the experiments, a gas mixture, contain- ing ozone, with different concentrations (10 and 20 g/m3) was fed into the camera. The pumping rate gas mixture through the camera was 0.30 m3/h. The filling time was determined by the output of the ozone concen- tration in the camera to the stationary level. Then, the ozone-oxygen mixture feeding from the ozonizers was switched off and every 30 minutes the ozone concentra- tion in the experimental camera was measured. The re- sults of experimental studies and theoretical calculations of the ozone decay dynamics in an empty camera are shown on Fig. 2. The asymptotic ozone concentration in the camera with inlet concentration 20 g/m3 was 13 g/m3, and with input concentration 10 g/m3 it was 7.7 g/m3. The time of reaching the asymptotic concen- tration in the camera was 2h. The theoretical curve was calculated by the formula (4). From the graph it can be concluded that the ozone concentration change in the camera has an exponential character. The rate of ozone decay depends on its initial concentration. The difference between the theoretical and experimental curves is related with the fact that the calculation did not take into account the ozone decay on the camera walls. ISSN 1562-6016. ВАНТ. 2018. №4(116) 183 Fig. 2. Ozone decay dynamics in empty camera For the next experiment, a 30% volume camera was filled with polystyrene foam, then closed and filled with an ozone-air mixture at various concentrations (10 and 20 g/m3). The asymptotic concentration in the camera with the inlet concentration 20 g/m3 was 7 g/m3, and with the input concentration 10 g/m3 it was 3.5 g/m3. The camera filling time was 2 h. Theoretical calculation of the ozone concentration change dynamics in a camera filled with polystyrene foam was carried out taking into account the ozone decay on the surface and was made using the formula (6). The results of the study are shown in Fig. 3. Fig. 3. Ozone decay dynamics for the camera with polystyrene foam As can be seen from the graph the presence of poly- styrene foam in the experimental camera reduces the initial concentration in volume twice. For the next experiment, the camera volume was filled with metal by 30 and 50%. The ozone concentra- tion in the gas mixture at the camera inlet was 20 g/m3. The asymptotic ozone concentration in the camera with 30% filling in was 2.5 g/m3, with 50% − 1.5 g/m3. The camera filling time was 2h. The experimental results of the ozone concentration change in the camera from time are presented in Fig. 4. Fig. 4. Ozone decay dynamics for the camera with metal The theoretical calculation for this case is compli- cated because of the complex geometry of the ozone disintegration surface. As can be seen from the graph, the presence of metal significantly increases the surface of ozone decay. This involves the interaction mechanism of ozone with iron, which greatly accelerates the decay process. On the following graph (Fig. 5) the experimental re- sults of ozone decay in the empty camera, in the camera filled with expanded polystyrene foam by 30% and in the camera filled with metal by 30% are presented. Fig. 5. Ozone decay curves for empty camera, camera with polystyrene foam and metal From the analysis of the data presented on the graph, it can be concluded that the presence of the developed surface in the working camera significantly (more than 5 times) increases the ozone decay rate. In the next experiment, the ozone decay dynamics at different temperatures (10 and 20°C) was studied. The ozone concentration in the gas mixture at the camera inlet was 20 g/m3. The asymptotic concentration in the camera at 10°C was 13 g/m3, and at 20°C it was 8.5 g/m3. The camera filling time was 2h. The experi- mental results of the ozone concentration change in the camera from time and the calculated curves are shown in Fig. 6. Fig. 6. Ozone decay dynamics at different temperature From the graph it can be concluded that the higher is the temperature in the experimental camera, the faster ozone decays. CONCLUSIONS The results of theoretical and experimental study of the ozone decay dynamics in the experimental chamber previously filled with the ozone-air mixture are present- ed. Assuming that ozone decay takes place in a volume and is described by first-order kinetics, an analytical expression for the dependence of the ozone concentra- tion in the camera on time and the problem parameters, ISSN 1562-6016. ВАНТ. 2018. №4(116) 184 such as the feeding rate of ozone-air mixture to the camera inlet, the ozone concentration at the camera in- let, the camera volume and the area of its internal sur- face is obtained. The ozone decay dynamics in the camera was exper- imentally studied with the ozone-air mixture pumping rate 0.3 m3/h for various ozone concentrations at the inlet (10 and 20 g/m3). It is shown that the rate of ozone decay depends on the area of the working camera inner surface and the objects material placed inside. In this case, the asymptotic ozone concentration that is gener- ated in the camera also significantly depends on the area of the camera inner surface and the filling material. REFERENCES 1. Yu.V. Filippov, V.A. Voblikova, V.I. Panteleev. Ozone electrosynthesis. 1987, 237 p. 2. Ozone and other environmentally friendly oxidizers // The 29th All-Russian Seminar “Science and Tech- nology”. 1997. 3. Ozone Gets OK For Use in U.S. Food Industry // EPRI Journal. 1997, v. 22, № 4, p. 3. 4. V.V. Lunin, M.P. Popovich, S.N. Tkachenko. Physi- cal chemistry of ozone. М.: “MSU Publishing house”, 1998. 5. S.W. Benson. Bases of chemical kinetics. G.: “Sci- ence”, 1964. 6. V.I. Golota, О.V. Manuilenko, G.V. Тaran, А.S. Pismenetskii, А.А. Zamuriev, V.А. Benitskaja, Yu.V. Dotsenko. Ozone disintegration kinetics in the reactor for decomposition of tyres // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Acceleration”. 2010, № 4, p. 204-209. 7. V.I. Golota, O.V. Manuilenko, G.V. Taran, Yu.V. Dotsenko, A.S. Pismenetskii, A.A. Zamuriev, V.A. Benitskaja. Ozone decay in chemical reactor for ozone-dynamical disintegration of used tyres // Problems of Atomic Science and Technology. Series “Plasma Physics”. 2011, № 1, p. 119-121. 8. O.V. Manuilenko, V.I. Golota. Ozone decay in chemical reactor with the developed inner surface// Problems of Atomic Science and Technology. Series “Plasma Physics”. 2017, № 1, p. 148-151. Article received 15.06.2018 ИССЛЕДОВАНИЯ ДИНАМИКИ РАСПАДА ОЗОНА ПРИ РАЗЛИЧНЫХ ТЕХНОЛОГИЧЕСКИХ УСЛОВИЯХ В.И. Голота, Г.В. Таран, О.В. Мануйленко, А.А. Замуриев, Ю.В. Ситникова, П.О. Опалев Экспериментально и теоретически исследована динамика распада озона в рабочей камере, предваритель- но заполненной озоно-воздушной смесью. Для различных значений начальной концентрации на входе в ка- меру и условий эксперимента были рассмотрены несколько случаев: с пустой камерой, заполненной пено- полистиролом на 30% и заполненной металлической стружкой на 30 и 50%. Получена зависимость концен- трации озона в камере от времени и параметров эксперимента, учитывая ее площадь внутренней поверхно- сти. Показано, что на скорость распада озона в рабочей камере влияют как механизм его деструкции в газе, так и распад на внутренней поверхности камеры, а также материал заполнения камеры. ДОСЛІДЖЕННЯ КІНЕТИКИ РОЗПАДУ ОЗОНУ В РІЗНИХ ТЕХНОЛОГІЧНИХ УМОВАХ В.І. Голота, Г.В. Таран, О.В. Мануйленко, О.О. Замурієв, Ю.В. Сiтнікова, П.О. Опалєв Експериментально і теоретично досліджена динаміка розпаду озону в робочій камері, яка попередньо була заповнена озоно-повітряною сумішшю. Для різних значень початкової концентрації на вході в камеру і умов експерименту були розглянуті кілька випадків: з порожньою камерою, заповненою пінополістиролом на 30% і заповненою металевою стружкою на 30 і 50%. Отримано залежність концентрації озону в камері від часу і параметрів експерименту, враховуючи її площу внутрішньої поверхні. Показано, що на швидкість розпаду озону в робочій камері впливають як механізм його деструкції в газі, так і розпад на внутрішній поверхні камери, а також матеріал заповнення камери.