Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility
We show that under certain technical assumptions any weakly nonlocal Hamiltonian structure compatible with a given nondegenerate weakly nonlocal symplectic structure J can be written as the Lie derivative of J −1 along a suitably chosen nonlocal vector field. Moreover, we present a new description f...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2007 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2007
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147362 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility / A. Sergyeyev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 32 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147362 |
|---|---|
| record_format |
dspace |
| spelling |
Sergyeyev, A. 2019-02-14T14:43:38Z 2019-02-14T14:43:38Z 2007 Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility / A. Sergyeyev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 32 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K10; 37K05 https://nasplib.isofts.kiev.ua/handle/123456789/147362 We show that under certain technical assumptions any weakly nonlocal Hamiltonian structure compatible with a given nondegenerate weakly nonlocal symplectic structure J can be written as the Lie derivative of J −1 along a suitably chosen nonlocal vector field. Moreover, we present a new description for local Hamiltonian structures of arbitrary order compatible with a given nondegenerate local Hamiltonian structure of zero or first order, including Hamiltonian operators of the Dubrovin-Novikov type. This paper is a contribution to the Vadim Kuznetsov Memorial Issue ‘Integrable Systems and Related Topics’. I am sincerely grateful to Prof. M. B laszak and Drs. M. Marvan, E.V. Ferapontov, M.V. Pavlov and R.G. Smirnov for stimulating discussions. I am also pleased to thank the referees for useful suggestions.This research was supported in part by the Czech Grant Agency (GA CR) under grant No. 201/04/0538, by the Ministry of Education, Youth and Sports of the Czech Republic (MSMTCR) under grant MSM 4781305904 and by Silesian University in Opava under grant IGS 1/2004. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility |
| spellingShingle |
Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility Sergyeyev, A. |
| title_short |
Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility |
| title_full |
Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility |
| title_fullStr |
Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility |
| title_full_unstemmed |
Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility |
| title_sort |
weakly nonlocal hamiltonian structures: lie derivative and compatibility |
| author |
Sergyeyev, A. |
| author_facet |
Sergyeyev, A. |
| publishDate |
2007 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We show that under certain technical assumptions any weakly nonlocal Hamiltonian structure compatible with a given nondegenerate weakly nonlocal symplectic structure J can be written as the Lie derivative of J −1 along a suitably chosen nonlocal vector field. Moreover, we present a new description for local Hamiltonian structures of arbitrary order compatible with a given nondegenerate local Hamiltonian structure of zero or first order, including Hamiltonian operators of the Dubrovin-Novikov type.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147362 |
| citation_txt |
Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility / A. Sergyeyev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 32 назв. — англ. |
| work_keys_str_mv |
AT sergyeyeva weaklynonlocalhamiltonianstructuresliederivativeandcompatibility |
| first_indexed |
2025-12-02T10:58:13Z |
| last_indexed |
2025-12-02T10:58:13Z |
| _version_ |
1850862273390706688 |