Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility

We show that under certain technical assumptions any weakly nonlocal Hamiltonian structure compatible with a given nondegenerate weakly nonlocal symplectic structure J can be written as the Lie derivative of J −1 along a suitably chosen nonlocal vector field. Moreover, we present a new description f...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2007
Автор: Sergyeyev, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147362
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility / A. Sergyeyev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147362
record_format dspace
spelling Sergyeyev, A.
2019-02-14T14:43:38Z
2019-02-14T14:43:38Z
2007
Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility / A. Sergyeyev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 32 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 37K10; 37K05
https://nasplib.isofts.kiev.ua/handle/123456789/147362
We show that under certain technical assumptions any weakly nonlocal Hamiltonian structure compatible with a given nondegenerate weakly nonlocal symplectic structure J can be written as the Lie derivative of J −1 along a suitably chosen nonlocal vector field. Moreover, we present a new description for local Hamiltonian structures of arbitrary order compatible with a given nondegenerate local Hamiltonian structure of zero or first order, including Hamiltonian operators of the Dubrovin-Novikov type.
This paper is a contribution to the Vadim Kuznetsov Memorial Issue ‘Integrable Systems and Related Topics’. I am sincerely grateful to Prof. M. B laszak and Drs. M. Marvan, E.V. Ferapontov, M.V. Pavlov and R.G. Smirnov for stimulating discussions. I am also pleased to thank the referees for useful suggestions.This research was supported in part by the Czech Grant Agency (GA CR) under grant No. 201/04/0538, by the Ministry of Education, Youth and Sports of the Czech Republic (MSMTCR) under grant MSM 4781305904 and by Silesian University in Opava under grant IGS 1/2004.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility
spellingShingle Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility
Sergyeyev, A.
title_short Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility
title_full Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility
title_fullStr Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility
title_full_unstemmed Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility
title_sort weakly nonlocal hamiltonian structures: lie derivative and compatibility
author Sergyeyev, A.
author_facet Sergyeyev, A.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We show that under certain technical assumptions any weakly nonlocal Hamiltonian structure compatible with a given nondegenerate weakly nonlocal symplectic structure J can be written as the Lie derivative of J −1 along a suitably chosen nonlocal vector field. Moreover, we present a new description for local Hamiltonian structures of arbitrary order compatible with a given nondegenerate local Hamiltonian structure of zero or first order, including Hamiltonian operators of the Dubrovin-Novikov type.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147362
citation_txt Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility / A. Sergyeyev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 32 назв. — англ.
work_keys_str_mv AT sergyeyeva weaklynonlocalhamiltonianstructuresliederivativeandcompatibility
first_indexed 2025-12-02T10:58:13Z
last_indexed 2025-12-02T10:58:13Z
_version_ 1850862273390706688