Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice

We present two new families of stationary solutions for equations of Bose-Fermi mixtures with an elliptic function potential with modulus k. We also discuss particular cases when the quasiperiodic solutions become periodic ones. In the limit of a sinusoidal potential (k → 0) our solutions model a qu...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2007
Автори: Kostov, N.A., Gerdjikov, V.S., Valchev, T.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147363
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice / N.A. Kostov, V.S. Gerdjikov, T.I. Valchev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147363
record_format dspace
spelling Kostov, N.A.
Gerdjikov, V.S.
Valchev, T.I.
2019-02-14T14:44:05Z
2019-02-14T14:44:05Z
2007
Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice / N.A. Kostov, V.S. Gerdjikov, T.I. Valchev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 37K20; 35Q51; 74J30; 78A60
https://nasplib.isofts.kiev.ua/handle/123456789/147363
We present two new families of stationary solutions for equations of Bose-Fermi mixtures with an elliptic function potential with modulus k. We also discuss particular cases when the quasiperiodic solutions become periodic ones. In the limit of a sinusoidal potential (k → 0) our solutions model a quasi-one dimensional quantum degenerate Bose-Fermi mixture trapped in optical lattice. In the limit k → 1 the solutions are expressed by hyperbolic function solutions (vector solitons). Thus we are able to obtain in an unified way quasi-periodic and periodic waves, and solitons. The precise conditions for existence of every class of solutions are derived. There are indications that such waves and localized objects may be observed in experiments with cold quantum degenerate gases.
The present work is supported by the National Science Foundation of Bulgaria, contract No F-1410.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice
spellingShingle Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice
Kostov, N.A.
Gerdjikov, V.S.
Valchev, T.I.
title_short Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice
title_full Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice
title_fullStr Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice
title_full_unstemmed Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice
title_sort exact solutions for equations of bose-fermi mixtures in one-dimensional optical lattice
author Kostov, N.A.
Gerdjikov, V.S.
Valchev, T.I.
author_facet Kostov, N.A.
Gerdjikov, V.S.
Valchev, T.I.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We present two new families of stationary solutions for equations of Bose-Fermi mixtures with an elliptic function potential with modulus k. We also discuss particular cases when the quasiperiodic solutions become periodic ones. In the limit of a sinusoidal potential (k → 0) our solutions model a quasi-one dimensional quantum degenerate Bose-Fermi mixture trapped in optical lattice. In the limit k → 1 the solutions are expressed by hyperbolic function solutions (vector solitons). Thus we are able to obtain in an unified way quasi-periodic and periodic waves, and solitons. The precise conditions for existence of every class of solutions are derived. There are indications that such waves and localized objects may be observed in experiments with cold quantum degenerate gases.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147363
citation_txt Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice / N.A. Kostov, V.S. Gerdjikov, T.I. Valchev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ.
work_keys_str_mv AT kostovna exactsolutionsforequationsofbosefermimixturesinonedimensionalopticallattice
AT gerdjikovvs exactsolutionsforequationsofbosefermimixturesinonedimensionalopticallattice
AT valchevti exactsolutionsforequationsofbosefermimixturesinonedimensionalopticallattice
first_indexed 2025-12-01T02:21:47Z
last_indexed 2025-12-01T02:21:47Z
_version_ 1850859067155677184