Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn

We study the Jacobi-Trudi-type determinant which is conjectured to be the q-character of a certain, in many cases irreducible, finite-dimensional representation of the quantum affine algebra of type Cn. Like the Dn case studied by the authors recently, applying the Gessel-Viennot path method with an...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2007
Автори: Nakai, W., Nakanishi, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147368
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn / W. Nakai, T. Nakanishi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147368
record_format dspace
spelling Nakai, W.
Nakanishi, T.
2019-02-14T14:46:20Z
2019-02-14T14:46:20Z
2007
Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn / W. Nakai, T. Nakanishi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 28 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 17B37; 05E15
https://nasplib.isofts.kiev.ua/handle/123456789/147368
We study the Jacobi-Trudi-type determinant which is conjectured to be the q-character of a certain, in many cases irreducible, finite-dimensional representation of the quantum affine algebra of type Cn. Like the Dn case studied by the authors recently, applying the Gessel-Viennot path method with an additional involution and a deformation of paths, we obtain an expression by a positive sum over a set of tuples of paths, which is naturally translated into the one over a set of tableaux on a skew diagram.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn
spellingShingle Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn
Nakai, W.
Nakanishi, T.
title_short Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn
title_full Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn
title_fullStr Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn
title_full_unstemmed Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn
title_sort paths and tableaux descriptions of jacobi-trudi determinant associated with quantum affine algebra of type cn
author Nakai, W.
Nakanishi, T.
author_facet Nakai, W.
Nakanishi, T.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study the Jacobi-Trudi-type determinant which is conjectured to be the q-character of a certain, in many cases irreducible, finite-dimensional representation of the quantum affine algebra of type Cn. Like the Dn case studied by the authors recently, applying the Gessel-Viennot path method with an additional involution and a deformation of paths, we obtain an expression by a positive sum over a set of tuples of paths, which is naturally translated into the one over a set of tableaux on a skew diagram.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147368
citation_txt Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn / W. Nakai, T. Nakanishi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 28 назв. — англ.
work_keys_str_mv AT nakaiw pathsandtableauxdescriptionsofjacobitrudideterminantassociatedwithquantumaffinealgebraoftypecn
AT nakanishit pathsandtableauxdescriptionsofjacobitrudideterminantassociatedwithquantumaffinealgebraoftypecn
first_indexed 2025-12-07T19:15:29Z
last_indexed 2025-12-07T19:15:29Z
_version_ 1850878124072370176