Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn
We study the Jacobi-Trudi-type determinant which is conjectured to be the q-character of a certain, in many cases irreducible, finite-dimensional representation of the quantum affine algebra of type Cn. Like the Dn case studied by the authors recently, applying the Gessel-Viennot path method with an...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2007 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2007
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147368 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn / W. Nakai, T. Nakanishi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147368 |
|---|---|
| record_format |
dspace |
| spelling |
Nakai, W. Nakanishi, T. 2019-02-14T14:46:20Z 2019-02-14T14:46:20Z 2007 Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn / W. Nakai, T. Nakanishi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 28 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 17B37; 05E15 https://nasplib.isofts.kiev.ua/handle/123456789/147368 We study the Jacobi-Trudi-type determinant which is conjectured to be the q-character of a certain, in many cases irreducible, finite-dimensional representation of the quantum affine algebra of type Cn. Like the Dn case studied by the authors recently, applying the Gessel-Viennot path method with an additional involution and a deformation of paths, we obtain an expression by a positive sum over a set of tuples of paths, which is naturally translated into the one over a set of tableaux on a skew diagram. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn |
| spellingShingle |
Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn Nakai, W. Nakanishi, T. |
| title_short |
Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn |
| title_full |
Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn |
| title_fullStr |
Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn |
| title_full_unstemmed |
Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn |
| title_sort |
paths and tableaux descriptions of jacobi-trudi determinant associated with quantum affine algebra of type cn |
| author |
Nakai, W. Nakanishi, T. |
| author_facet |
Nakai, W. Nakanishi, T. |
| publishDate |
2007 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We study the Jacobi-Trudi-type determinant which is conjectured to be the q-character of a certain, in many cases irreducible, finite-dimensional representation of the quantum affine algebra of type Cn. Like the Dn case studied by the authors recently, applying the Gessel-Viennot path method with an additional involution and a deformation of paths, we obtain an expression by a positive sum over a set of tuples of paths, which is naturally translated into the one over a set of tableaux on a skew diagram.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147368 |
| citation_txt |
Paths and Tableaux Descriptions of Jacobi-Trudi Determinant Associated with Quantum Affine Algebra of Type Cn / W. Nakai, T. Nakanishi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 28 назв. — англ. |
| work_keys_str_mv |
AT nakaiw pathsandtableauxdescriptionsofjacobitrudideterminantassociatedwithquantumaffinealgebraoftypecn AT nakanishit pathsandtableauxdescriptionsofjacobitrudideterminantassociatedwithquantumaffinealgebraoftypecn |
| first_indexed |
2025-12-07T19:15:29Z |
| last_indexed |
2025-12-07T19:15:29Z |
| _version_ |
1850878124072370176 |