SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases

This paper deals with bases in a finite-dimensional Hilbert space. Such a space can be realized as a subspace of the representation space of SU₂ corresponding to an irreducible representation of SU₂. The representation theory of SU₂ is reconsidered via the use of two truncated deformed oscillators....

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2007
Автори: Albouy, O., Kibler, M.R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147375
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases / O. Albouy, M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 78 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147375
record_format dspace
spelling Albouy, O.
Kibler, M.R.
2019-02-14T14:50:37Z
2019-02-14T14:50:37Z
2007
SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases / O. Albouy, M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 78 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 81R50; 81R05; 81R10; 81R15
https://nasplib.isofts.kiev.ua/handle/123456789/147375
This paper deals with bases in a finite-dimensional Hilbert space. Such a space can be realized as a subspace of the representation space of SU₂ corresponding to an irreducible representation of SU₂. The representation theory of SU₂ is reconsidered via the use of two truncated deformed oscillators. This leads to replacement of the familiar scheme {j²,jz} by a scheme {j²,vra}, where the two-parameter operator vra is defined in the universal enveloping algebra of the Lie algebra su₂. The eigenvectors of the commuting set of operators {j²,vra} are adapted to a tower of chains SO₃⊃C₂j₊₁ (2j∈N∗), where C₂j₊₁ is the cyclic group of order 2j+1. In the case where 2j+1 is prime, the corresponding eigenvectors generate a complete set of mutually unbiased bases. Some useful relations on generalized quadratic Gauss sums are exposed in three appendices
The senior author (M.R.K.) acknowledges Philippe Langevin for useful correspondence. The authors thank Hubert de Guise, Michel Planat, and Metod Saniga for interesting discussions. They are indebted to Bruce Berndt and Ron Evans for providing them with an alternative proof of the result in Appendix C. Thanks are due to the Referees for useful and constructive suggestions.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases
spellingShingle SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases
Albouy, O.
Kibler, M.R.
title_short SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases
title_full SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases
title_fullStr SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases
title_full_unstemmed SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases
title_sort su₂ nonstandard bases: case of mutually unbiased bases
author Albouy, O.
Kibler, M.R.
author_facet Albouy, O.
Kibler, M.R.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description This paper deals with bases in a finite-dimensional Hilbert space. Such a space can be realized as a subspace of the representation space of SU₂ corresponding to an irreducible representation of SU₂. The representation theory of SU₂ is reconsidered via the use of two truncated deformed oscillators. This leads to replacement of the familiar scheme {j²,jz} by a scheme {j²,vra}, where the two-parameter operator vra is defined in the universal enveloping algebra of the Lie algebra su₂. The eigenvectors of the commuting set of operators {j²,vra} are adapted to a tower of chains SO₃⊃C₂j₊₁ (2j∈N∗), where C₂j₊₁ is the cyclic group of order 2j+1. In the case where 2j+1 is prime, the corresponding eigenvectors generate a complete set of mutually unbiased bases. Some useful relations on generalized quadratic Gauss sums are exposed in three appendices
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147375
fulltext
citation_txt SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases / O. Albouy, M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 78 назв. — англ.
work_keys_str_mv AT albouyo su2nonstandardbasescaseofmutuallyunbiasedbases
AT kiblermr su2nonstandardbasescaseofmutuallyunbiasedbases
first_indexed 2025-11-24T15:15:40Z
last_indexed 2025-11-24T15:15:40Z
_version_ 1850847945746808832