The Veldkamp Space of Two-Qubits
Given a remarkable representation of the generalized Pauli operators of two-qubits in terms of the points of the generalized quadrangle of order two, W(2), it is shown that specific subsets of these operators can also be associated with the points and lines of the four-dimensional projective space o...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2007 |
| Hauptverfasser: | , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2007
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147382 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | The Veldkamp Space of Two-Qubits / M. Saniga, M. Planat, P. Pracna, H. Havlicek // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Given a remarkable representation of the generalized Pauli operators of two-qubits in terms of the points of the generalized quadrangle of order two, W(2), it is shown that specific subsets of these operators can also be associated with the points and lines of the four-dimensional projective space over the Galois field with two elements - the so-called Veldkamp space of W(2). An intriguing novelty is the recognition of (uni- and tri-centric) triads and specific pentads of the Pauli operators in addition to the ''classical'' subsets answering to geometric hyperplanes of W(2).
|
|---|---|
| ISSN: | 1815-0659 |