Do All Integrable Evolution Equations Have the Painlevé Property?

We examine whether the Painlevé property is necessary for the integrability of partial differential equations (PDEs). We show that in analogy to what happens in the case of ordinary differential equations (ODEs) there exists a class of PDEs, integrable through linearisation, which do not possess the...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2007
Автори: Tamizhmani, K.M., Grammaticos, B., Ramani, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147384
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Do All Integrable Evolution Equations Have the Painlevé Property? / K.M. Tamizhmani, B. Grammaticos, A. Ramani // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147384
record_format dspace
spelling Tamizhmani, K.M.
Grammaticos, B.
Ramani, A.
2019-02-14T14:57:07Z
2019-02-14T14:57:07Z
2007
Do All Integrable Evolution Equations Have the Painlevé Property? / K.M. Tamizhmani, B. Grammaticos, A. Ramani // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 17 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 34A99; 35A21; 39A12
https://nasplib.isofts.kiev.ua/handle/123456789/147384
We examine whether the Painlevé property is necessary for the integrability of partial differential equations (PDEs). We show that in analogy to what happens in the case of ordinary differential equations (ODEs) there exists a class of PDEs, integrable through linearisation, which do not possess the Painlevé property. The same question is addressed in a discrete setting where we show that there exist linearisable lattice equations which do not possess the singularity confinement property (again in analogy to the one-dimensional case).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Do All Integrable Evolution Equations Have the Painlevé Property?
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Do All Integrable Evolution Equations Have the Painlevé Property?
spellingShingle Do All Integrable Evolution Equations Have the Painlevé Property?
Tamizhmani, K.M.
Grammaticos, B.
Ramani, A.
title_short Do All Integrable Evolution Equations Have the Painlevé Property?
title_full Do All Integrable Evolution Equations Have the Painlevé Property?
title_fullStr Do All Integrable Evolution Equations Have the Painlevé Property?
title_full_unstemmed Do All Integrable Evolution Equations Have the Painlevé Property?
title_sort do all integrable evolution equations have the painlevé property?
author Tamizhmani, K.M.
Grammaticos, B.
Ramani, A.
author_facet Tamizhmani, K.M.
Grammaticos, B.
Ramani, A.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We examine whether the Painlevé property is necessary for the integrability of partial differential equations (PDEs). We show that in analogy to what happens in the case of ordinary differential equations (ODEs) there exists a class of PDEs, integrable through linearisation, which do not possess the Painlevé property. The same question is addressed in a discrete setting where we show that there exist linearisable lattice equations which do not possess the singularity confinement property (again in analogy to the one-dimensional case).
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147384
citation_txt Do All Integrable Evolution Equations Have the Painlevé Property? / K.M. Tamizhmani, B. Grammaticos, A. Ramani // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT tamizhmanikm doallintegrableevolutionequationshavethepainleveproperty
AT grammaticosb doallintegrableevolutionequationshavethepainleveproperty
AT ramania doallintegrableevolutionequationshavethepainleveproperty
first_indexed 2025-12-07T18:52:42Z
last_indexed 2025-12-07T18:52:42Z
_version_ 1850876690389008384