1+1 Gaudin Model

We study 1+1 field-generalizations of the rational and elliptic Gaudin models. For sl(N) case we introduce equations of motion and L-A pair with spectral parameter on the Riemann sphere and elliptic curve. In sl(2) case we study the equations in detail and find the corresponding Hamiltonian densitie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2011
1. Verfasser: Zotov, A.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147387
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:1+1 Gaudin Model / A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 39 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147387
record_format dspace
spelling Zotov, A.V.
2019-02-14T16:56:21Z
2019-02-14T16:56:21Z
2011
1+1 Gaudin Model / A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 39 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 14H70; 33E05; 37K20; 37K10
DOI:10.3842/SIGMA.2011.067
https://nasplib.isofts.kiev.ua/handle/123456789/147387
We study 1+1 field-generalizations of the rational and elliptic Gaudin models. For sl(N) case we introduce equations of motion and L-A pair with spectral parameter on the Riemann sphere and elliptic curve. In sl(2) case we study the equations in detail and find the corresponding Hamiltonian densities. The n-site model describes n interacting Landau-Lifshitz models of magnets. The interaction depends on position of the sites (marked points on the curve). We also analyze the 2-site case in its own right and describe its relation to the principal chiral model. We emphasize that 1+1 version impose a restriction on a choice of flows on the level of the corresponding 0+1 classical mechanics.
Author is grateful to M.A. Olshanetsky for useful discussions and remarks. The work was supported by grants RFBR-09-02-00393, RFBR-09-01-92437-KEa, RFBR-09-01-93106-NCNILa, Russian President fund MK-1646.2011.1 and to the Federal Agency for Science and Innovations of Russian Federation under contract 14.740.11.0347.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
1+1 Gaudin Model
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title 1+1 Gaudin Model
spellingShingle 1+1 Gaudin Model
Zotov, A.V.
title_short 1+1 Gaudin Model
title_full 1+1 Gaudin Model
title_fullStr 1+1 Gaudin Model
title_full_unstemmed 1+1 Gaudin Model
title_sort 1+1 gaudin model
author Zotov, A.V.
author_facet Zotov, A.V.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study 1+1 field-generalizations of the rational and elliptic Gaudin models. For sl(N) case we introduce equations of motion and L-A pair with spectral parameter on the Riemann sphere and elliptic curve. In sl(2) case we study the equations in detail and find the corresponding Hamiltonian densities. The n-site model describes n interacting Landau-Lifshitz models of magnets. The interaction depends on position of the sites (marked points on the curve). We also analyze the 2-site case in its own right and describe its relation to the principal chiral model. We emphasize that 1+1 version impose a restriction on a choice of flows on the level of the corresponding 0+1 classical mechanics.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147387
citation_txt 1+1 Gaudin Model / A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 39 назв. — англ.
work_keys_str_mv AT zotovav 11gaudinmodel
first_indexed 2025-12-07T20:08:23Z
last_indexed 2025-12-07T20:08:23Z
_version_ 1850881452539904000