The Universal Askey-Wilson Algebra

In 1992 A. Zhedanov introduced the Askey-Wilson algebra AW=AW(3) and used it to describe the Askey-Wilson polynomials. In this paper we introduce a central extension Δ of AW, obtained from AW by reinterpreting certain parameters as central elements in the algebra. We call Δ the universal Askey-Wilso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2011
1. Verfasser: Terwilliger, P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147390
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Universal Askey-Wilson Algebra / P. Terwilliger // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 66 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147390
record_format dspace
spelling Terwilliger, P.
2019-02-14T16:59:45Z
2019-02-14T16:59:45Z
2011
The Universal Askey-Wilson Algebra / P. Terwilliger // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 66 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33D80; 33D45
https://nasplib.isofts.kiev.ua/handle/123456789/147390
DOI:10.3842/SIGMA.2011.069
In 1992 A. Zhedanov introduced the Askey-Wilson algebra AW=AW(3) and used it to describe the Askey-Wilson polynomials. In this paper we introduce a central extension Δ of AW, obtained from AW by reinterpreting certain parameters as central elements in the algebra. We call Δ the universal Askey-Wilson algebra. We give a faithful action of the modular group PSL₂(Z) on Δ as a group of automorphisms. We give a linear basis for Δ. We describe the center of Δ and the 2-sided ideal Δ[Δ,Δ]Δ. We discuss how Δ is related to the q-Onsager algebra.
This paper is a contribution to the Special Issue “Relationship of Orthogonal Polynomials and Special Functions with Quantum Groups and Integrable Systems”. The full collection is available a thttp://www.emis.de/journals/SIGMA/OPSF.html.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Universal Askey-Wilson Algebra
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Universal Askey-Wilson Algebra
spellingShingle The Universal Askey-Wilson Algebra
Terwilliger, P.
title_short The Universal Askey-Wilson Algebra
title_full The Universal Askey-Wilson Algebra
title_fullStr The Universal Askey-Wilson Algebra
title_full_unstemmed The Universal Askey-Wilson Algebra
title_sort universal askey-wilson algebra
author Terwilliger, P.
author_facet Terwilliger, P.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In 1992 A. Zhedanov introduced the Askey-Wilson algebra AW=AW(3) and used it to describe the Askey-Wilson polynomials. In this paper we introduce a central extension Δ of AW, obtained from AW by reinterpreting certain parameters as central elements in the algebra. We call Δ the universal Askey-Wilson algebra. We give a faithful action of the modular group PSL₂(Z) on Δ as a group of automorphisms. We give a linear basis for Δ. We describe the center of Δ and the 2-sided ideal Δ[Δ,Δ]Δ. We discuss how Δ is related to the q-Onsager algebra.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147390
citation_txt The Universal Askey-Wilson Algebra / P. Terwilliger // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 66 назв. — англ.
work_keys_str_mv AT terwilligerp theuniversalaskeywilsonalgebra
AT terwilligerp universalaskeywilsonalgebra
first_indexed 2025-12-07T17:38:01Z
last_indexed 2025-12-07T17:38:01Z
_version_ 1850871991560568832