Klein Topological Field Theories from Group Representations
We show that any complex (respectively real) representation of finite group naturally generates a open-closed (respectively Klein) topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the represe...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2011 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2011
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147393 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Klein Topological Field Theories from Group Representations / S.A. Loktev, S.M. Natanzon // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We show that any complex (respectively real) representation of finite group naturally generates a open-closed (respectively Klein) topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring.
|
|---|---|
| ISSN: | 1815-0659 |