From Quantum AN (Calogero) to H₄ (Rational) Model
A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by (i) a discrete symmetry of the Hamiltonian, (ii) a number of polynomial eigenfunctions, (iii) a fac...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2011 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2011
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147394 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | From Quantum AN (Calogero) to H₄ (Rational) Model / A.V. Turbiner // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147394 |
|---|---|
| record_format |
dspace |
| spelling |
Turbiner, A.V. 2019-02-14T17:25:44Z 2019-02-14T17:25:44Z 2011 From Quantum AN (Calogero) to H₄ (Rational) Model / A.V. Turbiner // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35P99; 47A15; 47A67; 47A75 DOI:10.3842/SIGMA.2011.071 https://nasplib.isofts.kiev.ua/handle/123456789/147394 A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by (i) a discrete symmetry of the Hamiltonian, (ii) a number of polynomial eigenfunctions, (iii) a factorization property for eigenfunctions, and admit (iv) the separation of the radial coordinate and, hence, the existence of the 2nd order integral, (v) an algebraic form in invariants of a discrete symmetry group (in space of orbits). This paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S₄)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications From Quantum AN (Calogero) to H₄ (Rational) Model Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
From Quantum AN (Calogero) to H₄ (Rational) Model |
| spellingShingle |
From Quantum AN (Calogero) to H₄ (Rational) Model Turbiner, A.V. |
| title_short |
From Quantum AN (Calogero) to H₄ (Rational) Model |
| title_full |
From Quantum AN (Calogero) to H₄ (Rational) Model |
| title_fullStr |
From Quantum AN (Calogero) to H₄ (Rational) Model |
| title_full_unstemmed |
From Quantum AN (Calogero) to H₄ (Rational) Model |
| title_sort |
from quantum an (calogero) to h₄ (rational) model |
| author |
Turbiner, A.V. |
| author_facet |
Turbiner, A.V. |
| publishDate |
2011 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by (i) a discrete symmetry of the Hamiltonian, (ii) a number of polynomial eigenfunctions, (iii) a factorization property for eigenfunctions, and admit (iv) the separation of the radial coordinate and, hence, the existence of the 2nd order integral, (v) an algebraic form in invariants of a discrete symmetry group (in space of orbits).
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147394 |
| citation_txt |
From Quantum AN (Calogero) to H₄ (Rational) Model / A.V. Turbiner // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ. |
| work_keys_str_mv |
AT turbinerav fromquantumancalogerotoh4rationalmodel |
| first_indexed |
2025-11-30T10:12:28Z |
| last_indexed |
2025-11-30T10:12:28Z |
| _version_ |
1850857265191452672 |