From Quantum AN (Calogero) to H₄ (Rational) Model

A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by (i) a discrete symmetry of the Hamiltonian, (ii) a number of polynomial eigenfunctions, (iii) a fac...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2011
Автор: Turbiner, A.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147394
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:From Quantum AN (Calogero) to H₄ (Rational) Model / A.V. Turbiner // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147394
record_format dspace
spelling Turbiner, A.V.
2019-02-14T17:25:44Z
2019-02-14T17:25:44Z
2011
From Quantum AN (Calogero) to H₄ (Rational) Model / A.V. Turbiner // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35P99; 47A15; 47A67; 47A75
DOI:10.3842/SIGMA.2011.071
https://nasplib.isofts.kiev.ua/handle/123456789/147394
A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by (i) a discrete symmetry of the Hamiltonian, (ii) a number of polynomial eigenfunctions, (iii) a factorization property for eigenfunctions, and admit (iv) the separation of the radial coordinate and, hence, the existence of the 2nd order integral, (v) an algebraic form in invariants of a discrete symmetry group (in space of orbits).
This paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S₄)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
From Quantum AN (Calogero) to H₄ (Rational) Model
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title From Quantum AN (Calogero) to H₄ (Rational) Model
spellingShingle From Quantum AN (Calogero) to H₄ (Rational) Model
Turbiner, A.V.
title_short From Quantum AN (Calogero) to H₄ (Rational) Model
title_full From Quantum AN (Calogero) to H₄ (Rational) Model
title_fullStr From Quantum AN (Calogero) to H₄ (Rational) Model
title_full_unstemmed From Quantum AN (Calogero) to H₄ (Rational) Model
title_sort from quantum an (calogero) to h₄ (rational) model
author Turbiner, A.V.
author_facet Turbiner, A.V.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by (i) a discrete symmetry of the Hamiltonian, (ii) a number of polynomial eigenfunctions, (iii) a factorization property for eigenfunctions, and admit (iv) the separation of the radial coordinate and, hence, the existence of the 2nd order integral, (v) an algebraic form in invariants of a discrete symmetry group (in space of orbits).
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147394
citation_txt From Quantum AN (Calogero) to H₄ (Rational) Model / A.V. Turbiner // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT turbinerav fromquantumancalogerotoh4rationalmodel
first_indexed 2025-11-30T10:12:28Z
last_indexed 2025-11-30T10:12:28Z
_version_ 1850857265191452672