An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
Orthogonal q-polynomials associated with q-Laguerre-Hahn form will be studied as a generalization of the q-semiclassical forms via a suitable q-difference equation. The concept of class and a criterion to determinate it will be given. The q-Riccati equation satisfied by the corresponding formal Stie...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2011 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2011
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/147401 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials / A. Ghressi, L. Khériji, M.I. Tounsi // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147401 |
|---|---|
| record_format |
dspace |
| spelling |
Ghressi, A. Khériji, L. Tounsi, M.I. 2019-02-14T17:36:55Z 2019-02-14T17:36:55Z 2011 An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials / A. Ghressi, L. Khériji, M.I. Tounsi // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 42C05; 33C45 DOI: http://dx.doi.org/10.3842/SIGMA.2011.092 https://nasplib.isofts.kiev.ua/handle/123456789/147401 Orthogonal q-polynomials associated with q-Laguerre-Hahn form will be studied as a generalization of the q-semiclassical forms via a suitable q-difference equation. The concept of class and a criterion to determinate it will be given. The q-Riccati equation satisfied by the corresponding formal Stieltjes series is obtained. Also, the structure relation is established. Some illustrative examples are highlighted. This paper is a contribution to the Proceedings of the Conference “Symmetries and Integrability of Difference Equations (SIDE-9)” (June 14–18, 2010, Varna, Bulgaria). The full collection is available at http://www.emis.de/journals/SIGMA/SIDE-9.html. The authors are very grateful to the referees for the constructive and valuable comments and recommendations and for making us pay attention to a certain references. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials |
| spellingShingle |
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials Ghressi, A. Khériji, L. Tounsi, M.I. |
| title_short |
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials |
| title_full |
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials |
| title_fullStr |
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials |
| title_full_unstemmed |
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials |
| title_sort |
introduction to the q-laguerre-hahn orthogonal q-polynomials |
| author |
Ghressi, A. Khériji, L. Tounsi, M.I. |
| author_facet |
Ghressi, A. Khériji, L. Tounsi, M.I. |
| publishDate |
2011 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
Orthogonal q-polynomials associated with q-Laguerre-Hahn form will be studied as a generalization of the q-semiclassical forms via a suitable q-difference equation. The concept of class and a criterion to determinate it will be given. The q-Riccati equation satisfied by the corresponding formal Stieltjes series is obtained. Also, the structure relation is established. Some illustrative examples are highlighted.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147401 |
| citation_txt |
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials / A. Ghressi, L. Khériji, M.I. Tounsi // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ. |
| work_keys_str_mv |
AT ghressia anintroductiontotheqlaguerrehahnorthogonalqpolynomials AT kherijil anintroductiontotheqlaguerrehahnorthogonalqpolynomials AT tounsimi anintroductiontotheqlaguerrehahnorthogonalqpolynomials AT ghressia introductiontotheqlaguerrehahnorthogonalqpolynomials AT kherijil introductiontotheqlaguerrehahnorthogonalqpolynomials AT tounsimi introductiontotheqlaguerrehahnorthogonalqpolynomials |
| first_indexed |
2025-12-07T21:11:21Z |
| last_indexed |
2025-12-07T21:11:21Z |
| _version_ |
1850885413272551425 |