An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials

Orthogonal q-polynomials associated with q-Laguerre-Hahn form will be studied as a generalization of the q-semiclassical forms via a suitable q-difference equation. The concept of class and a criterion to determinate it will be given. The q-Riccati equation satisfied by the corresponding formal Stie...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2011
Main Authors: Ghressi, A., Khériji, L., Tounsi, M.I.
Format: Article
Language:English
Published: Інститут математики НАН України 2011
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/147401
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials / A. Ghressi, L. Khériji, M.I. Tounsi // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147401
record_format dspace
spelling Ghressi, A.
Khériji, L.
Tounsi, M.I.
2019-02-14T17:36:55Z
2019-02-14T17:36:55Z
2011
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials / A. Ghressi, L. Khériji, M.I. Tounsi // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 42C05; 33C45
DOI: http://dx.doi.org/10.3842/SIGMA.2011.092
https://nasplib.isofts.kiev.ua/handle/123456789/147401
Orthogonal q-polynomials associated with q-Laguerre-Hahn form will be studied as a generalization of the q-semiclassical forms via a suitable q-difference equation. The concept of class and a criterion to determinate it will be given. The q-Riccati equation satisfied by the corresponding formal Stieltjes series is obtained. Also, the structure relation is established. Some illustrative examples are highlighted.
This paper is a contribution to the Proceedings of the Conference “Symmetries and Integrability of Difference Equations (SIDE-9)” (June 14–18, 2010, Varna, Bulgaria). The full collection is available at http://www.emis.de/journals/SIGMA/SIDE-9.html. The authors are very grateful to the referees for the constructive and valuable comments and recommendations and for making us pay attention to a certain references.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
spellingShingle An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
Ghressi, A.
Khériji, L.
Tounsi, M.I.
title_short An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
title_full An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
title_fullStr An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
title_full_unstemmed An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
title_sort introduction to the q-laguerre-hahn orthogonal q-polynomials
author Ghressi, A.
Khériji, L.
Tounsi, M.I.
author_facet Ghressi, A.
Khériji, L.
Tounsi, M.I.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Orthogonal q-polynomials associated with q-Laguerre-Hahn form will be studied as a generalization of the q-semiclassical forms via a suitable q-difference equation. The concept of class and a criterion to determinate it will be given. The q-Riccati equation satisfied by the corresponding formal Stieltjes series is obtained. Also, the structure relation is established. Some illustrative examples are highlighted.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147401
citation_txt An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials / A. Ghressi, L. Khériji, M.I. Tounsi // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT ghressia anintroductiontotheqlaguerrehahnorthogonalqpolynomials
AT kherijil anintroductiontotheqlaguerrehahnorthogonalqpolynomials
AT tounsimi anintroductiontotheqlaguerrehahnorthogonalqpolynomials
AT ghressia introductiontotheqlaguerrehahnorthogonalqpolynomials
AT kherijil introductiontotheqlaguerrehahnorthogonalqpolynomials
AT tounsimi introductiontotheqlaguerrehahnorthogonalqpolynomials
first_indexed 2025-12-07T21:11:21Z
last_indexed 2025-12-07T21:11:21Z
_version_ 1850885413272551425