Quantum Analogs of Tensor Product Representations of su(1,1)

We study representations of Uq(su(1,1)) that can be considered as quantum analogs of tensor products of irreducible *-representations of the Lie algebra su(1,1). We determine the decomposition of these representations into irreducible *-representations of Uq(su(1,1)) by diagonalizing the action of t...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2011
Автор: Groenevelt, W.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147402
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum Analogs of Tensor Product Representations of su(1,1) / W. Groenevelt // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147402
record_format dspace
spelling Groenevelt, W.
2019-02-14T17:38:28Z
2019-02-14T17:38:28Z
2011
Quantum Analogs of Tensor Product Representations of su(1,1) / W. Groenevelt // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 20G42; 33D80
DOI: http://dx.doi.org/10.3842/SIGMA.2011.077
https://nasplib.isofts.kiev.ua/handle/123456789/147402
We study representations of Uq(su(1,1)) that can be considered as quantum analogs of tensor products of irreducible *-representations of the Lie algebra su(1,1). We determine the decomposition of these representations into irreducible *-representations of Uq(su(1,1)) by diagonalizing the action of the Casimir operator on suitable subspaces of the representation spaces. This leads to an interpretation of the big q-Jacobi polynomials and big q-Jacobi functions as quantum analogs of Clebsch-Gordan coefficients.
This paper is a contribution to the Special Issue “Relationship of Orthogonal Polynomials and Special Functions with Quantum Groups and Integrable Systems”. The full collection is available at http://www.emis.de/journals/SIGMA/OPSF.html.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Quantum Analogs of Tensor Product Representations of su(1,1)
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Quantum Analogs of Tensor Product Representations of su(1,1)
spellingShingle Quantum Analogs of Tensor Product Representations of su(1,1)
Groenevelt, W.
title_short Quantum Analogs of Tensor Product Representations of su(1,1)
title_full Quantum Analogs of Tensor Product Representations of su(1,1)
title_fullStr Quantum Analogs of Tensor Product Representations of su(1,1)
title_full_unstemmed Quantum Analogs of Tensor Product Representations of su(1,1)
title_sort quantum analogs of tensor product representations of su(1,1)
author Groenevelt, W.
author_facet Groenevelt, W.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study representations of Uq(su(1,1)) that can be considered as quantum analogs of tensor products of irreducible *-representations of the Lie algebra su(1,1). We determine the decomposition of these representations into irreducible *-representations of Uq(su(1,1)) by diagonalizing the action of the Casimir operator on suitable subspaces of the representation spaces. This leads to an interpretation of the big q-Jacobi polynomials and big q-Jacobi functions as quantum analogs of Clebsch-Gordan coefficients.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147402
citation_txt Quantum Analogs of Tensor Product Representations of su(1,1) / W. Groenevelt // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT groeneveltw quantumanalogsoftensorproductrepresentationsofsu11
first_indexed 2025-12-07T15:41:19Z
last_indexed 2025-12-07T15:41:19Z
_version_ 1850864649327607808