A Lorentz-Covariant Connection for Canonical Gravity

We construct a Lorentz-covariant connection in the context of first order canonical gravity with non-vanishing Barbero-Immirzi parameter. To do so, we start with the phase space formulation derived from the canonical analysis of the Holst action in which the second class constraints have been solved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
Hauptverfasser: Geiller, M., Lachièze-Rey, M., Noui, K., Sardelli, F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147410
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A Lorentz-Covariant Connection for Canonical Gravity / M. Geiller, M. Lachièze-Rey, K. Noui, F. Sardelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We construct a Lorentz-covariant connection in the context of first order canonical gravity with non-vanishing Barbero-Immirzi parameter. To do so, we start with the phase space formulation derived from the canonical analysis of the Holst action in which the second class constraints have been solved explicitly. This allows us to avoid the use of Dirac brackets. In this context, we show that there is a ''unique'' Lorentz-covariant connection which is commutative in the sense of the Poisson bracket, and which furthermore agrees with the connection found by Alexandrov using the Dirac bracket. This result opens a new way toward the understanding of Lorentz-covariant loop quantum gravity.