A Lorentz-Covariant Connection for Canonical Gravity

We construct a Lorentz-covariant connection in the context of first order canonical gravity with non-vanishing Barbero-Immirzi parameter. To do so, we start with the phase space formulation derived from the canonical analysis of the Holst action in which the second class constraints have been solved...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2011
Main Authors: Geiller, M., Lachièze-Rey, M., Noui, K., Sardelli, F.
Format: Article
Language:English
Published: Інститут математики НАН України 2011
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/147410
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A Lorentz-Covariant Connection for Canonical Gravity / M. Geiller, M. Lachièze-Rey, K. Noui, F. Sardelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147410
record_format dspace
spelling Geiller, M.
Lachièze-Rey, M.
Noui, K.
Sardelli, F.
2019-02-14T17:55:45Z
2019-02-14T17:55:45Z
2011
A Lorentz-Covariant Connection for Canonical Gravity / M. Geiller, M. Lachièze-Rey, K. Noui, F. Sardelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 83C05; 83C45
DOI: http://dx.doi.org/10.3842/SIGMA.2011.083
https://nasplib.isofts.kiev.ua/handle/123456789/147410
We construct a Lorentz-covariant connection in the context of first order canonical gravity with non-vanishing Barbero-Immirzi parameter. To do so, we start with the phase space formulation derived from the canonical analysis of the Holst action in which the second class constraints have been solved explicitly. This allows us to avoid the use of Dirac brackets. In this context, we show that there is a ''unique'' Lorentz-covariant connection which is commutative in the sense of the Poisson bracket, and which furthermore agrees with the connection found by Alexandrov using the Dirac bracket. This result opens a new way toward the understanding of Lorentz-covariant loop quantum gravity.
This paper is a contribution to the Special Issue “Loop Quantum Gravity and Cosmology”. The full collection is available at http://www.emis.de/journals/SIGMA/LQGC.html. The authors would like to thank S. Alexandrov for carefully reading an earlier draft of this work, and for useful comments. K.N. is partially supported by the ANR.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A Lorentz-Covariant Connection for Canonical Gravity
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Lorentz-Covariant Connection for Canonical Gravity
spellingShingle A Lorentz-Covariant Connection for Canonical Gravity
Geiller, M.
Lachièze-Rey, M.
Noui, K.
Sardelli, F.
title_short A Lorentz-Covariant Connection for Canonical Gravity
title_full A Lorentz-Covariant Connection for Canonical Gravity
title_fullStr A Lorentz-Covariant Connection for Canonical Gravity
title_full_unstemmed A Lorentz-Covariant Connection for Canonical Gravity
title_sort lorentz-covariant connection for canonical gravity
author Geiller, M.
Lachièze-Rey, M.
Noui, K.
Sardelli, F.
author_facet Geiller, M.
Lachièze-Rey, M.
Noui, K.
Sardelli, F.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We construct a Lorentz-covariant connection in the context of first order canonical gravity with non-vanishing Barbero-Immirzi parameter. To do so, we start with the phase space formulation derived from the canonical analysis of the Holst action in which the second class constraints have been solved explicitly. This allows us to avoid the use of Dirac brackets. In this context, we show that there is a ''unique'' Lorentz-covariant connection which is commutative in the sense of the Poisson bracket, and which furthermore agrees with the connection found by Alexandrov using the Dirac bracket. This result opens a new way toward the understanding of Lorentz-covariant loop quantum gravity.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147410
citation_txt A Lorentz-Covariant Connection for Canonical Gravity / M. Geiller, M. Lachièze-Rey, K. Noui, F. Sardelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ.
work_keys_str_mv AT geillerm alorentzcovariantconnectionforcanonicalgravity
AT lachiezereym alorentzcovariantconnectionforcanonicalgravity
AT nouik alorentzcovariantconnectionforcanonicalgravity
AT sardellif alorentzcovariantconnectionforcanonicalgravity
AT geillerm lorentzcovariantconnectionforcanonicalgravity
AT lachiezereym lorentzcovariantconnectionforcanonicalgravity
AT nouik lorentzcovariantconnectionforcanonicalgravity
AT sardellif lorentzcovariantconnectionforcanonicalgravity
first_indexed 2025-12-02T13:44:01Z
last_indexed 2025-12-02T13:44:01Z
_version_ 1850862619571781632