Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces

A special class of integrable nonlinear differential equations related to A.III-type symmetric spaces and having additional reductions are analyzed via the inverse scattering method (ISM). Using the dressing method we construct two classes of soliton solutions associated with the Lax operator. Next,...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2011
Автори: Gerdjikov, V.S., Grahovski, G.G., Mikhailov, A.V., Valchev, T.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147414
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces / V.S. Gerdjikov, G.G. Grahovski, A.V. Mikhailov, T.I. Valchev // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 51 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147414
record_format dspace
spelling Gerdjikov, V.S.
Grahovski, G.G.
Mikhailov, A.V.
Valchev, T.I.
2019-02-14T18:05:31Z
2019-02-14T18:05:31Z
2011
Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces / V.S. Gerdjikov, G.G. Grahovski, A.V. Mikhailov, T.I. Valchev // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 51 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 37K20; 35Q51; 74J30; 78A60
DOI: http://dx.doi.org/10.3842/SIGMA.2011.096
https://nasplib.isofts.kiev.ua/handle/123456789/147414
A special class of integrable nonlinear differential equations related to A.III-type symmetric spaces and having additional reductions are analyzed via the inverse scattering method (ISM). Using the dressing method we construct two classes of soliton solutions associated with the Lax operator. Next, by using the Wronskian relations, the mapping between the potential and the minimal sets of scattering data is constructed. Furthermore, completeness relations for the 'squared solutions' (generalized exponentials) are derived. Next, expansions of the potential and its variation are obtained. This demonstrates that the interpretation of the inverse scattering method as a generalized Fourier transform holds true. Finally, the Hamiltonian structures of these generalized multi-component Heisenberg ferromagnetic (MHF) type integrable models on A.III-type symmetric spaces are briefly analyzed.
This paper is a contribution to the Proceedings of the Conference “Symmetries and Integrability of Difference Equations (SIDE-9)” (June 14–18, 2010, Varna, Bulgaria). The full collection is available at http://www.emis.de/journals/SIGMA/SIDE-9.html. The authors have the pleasure to thank Professor Allan Fordy for numerous useful discussions. The authors acknowledge support from the Royal Society and the Bulgarian academy of sciences via joint research project “Reductions of Nonlinear Evolution Equations and analytic spectral theory”. The work of G.G.G. is supported by the Science Foundation of Ireland (SFI), under Grant no. 09/RFP/MTH2144. Finally we would like to thank one of the referees for useful suggestions.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces
spellingShingle Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces
Gerdjikov, V.S.
Grahovski, G.G.
Mikhailov, A.V.
Valchev, T.I.
title_short Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces
title_full Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces
title_fullStr Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces
title_full_unstemmed Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces
title_sort polynomial bundles and generalised fourier transforms for integrable equations on a.iii-type symmetric spaces
author Gerdjikov, V.S.
Grahovski, G.G.
Mikhailov, A.V.
Valchev, T.I.
author_facet Gerdjikov, V.S.
Grahovski, G.G.
Mikhailov, A.V.
Valchev, T.I.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A special class of integrable nonlinear differential equations related to A.III-type symmetric spaces and having additional reductions are analyzed via the inverse scattering method (ISM). Using the dressing method we construct two classes of soliton solutions associated with the Lax operator. Next, by using the Wronskian relations, the mapping between the potential and the minimal sets of scattering data is constructed. Furthermore, completeness relations for the 'squared solutions' (generalized exponentials) are derived. Next, expansions of the potential and its variation are obtained. This demonstrates that the interpretation of the inverse scattering method as a generalized Fourier transform holds true. Finally, the Hamiltonian structures of these generalized multi-component Heisenberg ferromagnetic (MHF) type integrable models on A.III-type symmetric spaces are briefly analyzed.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147414
fulltext
citation_txt Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces / V.S. Gerdjikov, G.G. Grahovski, A.V. Mikhailov, T.I. Valchev // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 51 назв. — англ.
work_keys_str_mv AT gerdjikovvs polynomialbundlesandgeneralisedfouriertransformsforintegrableequationsonaiiitypesymmetricspaces
AT grahovskigg polynomialbundlesandgeneralisedfouriertransformsforintegrableequationsonaiiitypesymmetricspaces
AT mikhailovav polynomialbundlesandgeneralisedfouriertransformsforintegrableequationsonaiiitypesymmetricspaces
AT valchevti polynomialbundlesandgeneralisedfouriertransformsforintegrableequationsonaiiitypesymmetricspaces
first_indexed 2025-11-24T15:04:59Z
last_indexed 2025-11-24T15:04:59Z
_version_ 1850847335521714176