Classes of Bivariate Orthogonal Polynomials

We introduce a class of orthogonal polynomials in two variables which generalizes the disc polynomials and the 2-D Hermite polynomials. We identify certain interesting members of this class including a one variable generalization of the 2-D Hermite polynomials and a two variable extension of the Zer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2016
Hauptverfasser: Ismail, M.E.H., Zhang, R.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147415
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Classes of Bivariate Orthogonal Polynomials / M.E.H. Ismail, R. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 39 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147415
record_format dspace
spelling Ismail, M.E.H.
Zhang, R.
2019-02-14T18:08:54Z
2019-02-14T18:08:54Z
2016
Classes of Bivariate Orthogonal Polynomials / M.E.H. Ismail, R. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 39 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33C50; 33D50; 33C45; 33D45
DOI:10.3842/SIGMA.2016.021
https://nasplib.isofts.kiev.ua/handle/123456789/147415
We introduce a class of orthogonal polynomials in two variables which generalizes the disc polynomials and the 2-D Hermite polynomials. We identify certain interesting members of this class including a one variable generalization of the 2-D Hermite polynomials and a two variable extension of the Zernike or disc polynomials. We also give q-analogues of all these extensions. In each case in addition to generating functions and three term recursions we provide raising and lowering operators and show that the polynomials are eigenfunctions of second-order partial differential or q-difference operators.
This paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications. The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html. The authors are very grateful to the anonymous referees for their detailed reports on the first draft of this paper. Research of M.E.H. Ismail supported by a grant from DSFP program at King Saud and by the National Plan for Science, Technology and innovation (MAARIFAH), King Abdelaziz City for Science and Technology, Kingdom of Saudi Arabia, Award number 14-MAT623-02. Research of R. Zhang partially supported by National Science Foundation of China, grant No. 11371294.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Classes of Bivariate Orthogonal Polynomials
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Classes of Bivariate Orthogonal Polynomials
spellingShingle Classes of Bivariate Orthogonal Polynomials
Ismail, M.E.H.
Zhang, R.
title_short Classes of Bivariate Orthogonal Polynomials
title_full Classes of Bivariate Orthogonal Polynomials
title_fullStr Classes of Bivariate Orthogonal Polynomials
title_full_unstemmed Classes of Bivariate Orthogonal Polynomials
title_sort classes of bivariate orthogonal polynomials
author Ismail, M.E.H.
Zhang, R.
author_facet Ismail, M.E.H.
Zhang, R.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We introduce a class of orthogonal polynomials in two variables which generalizes the disc polynomials and the 2-D Hermite polynomials. We identify certain interesting members of this class including a one variable generalization of the 2-D Hermite polynomials and a two variable extension of the Zernike or disc polynomials. We also give q-analogues of all these extensions. In each case in addition to generating functions and three term recursions we provide raising and lowering operators and show that the polynomials are eigenfunctions of second-order partial differential or q-difference operators.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147415
citation_txt Classes of Bivariate Orthogonal Polynomials / M.E.H. Ismail, R. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 39 назв. — англ.
work_keys_str_mv AT ismailmeh classesofbivariateorthogonalpolynomials
AT zhangr classesofbivariateorthogonalpolynomials
first_indexed 2025-12-07T17:00:55Z
last_indexed 2025-12-07T17:00:55Z
_version_ 1850869658120355840