Hierarchies of Manakov-Santini Type by Means of Rota-Baxter and Other Identities

The Lax-Sato approach to the hierarchies of Manakov-Santini type is formalized in order to extend it to a more general class of integrable systems. For this purpose some linear operators are introduced, which must satisfy some integrability conditions, one of them is the Rota-Baxter identity. The th...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2016
Main Author: Szablikowski, B.M.
Format: Article
Language:English
Published: Інститут математики НАН України 2016
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/147416
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Hierarchies of Manakov-Santini Type by Means of Rota-Baxter and Other Identities / B.M Szablikowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 34 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:The Lax-Sato approach to the hierarchies of Manakov-Santini type is formalized in order to extend it to a more general class of integrable systems. For this purpose some linear operators are introduced, which must satisfy some integrability conditions, one of them is the Rota-Baxter identity. The theory is illustrated by means of the algebra of Laurent series, the related hierarchies are classified and examples, also new, of Manakov-Santini type systems are constructed, including those that are related to the dispersionless modified Kadomtsev-Petviashvili equation and so called dispersionless r-th systems.
ISSN:1815-0659