Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems

In the context of the theory of symplectic-Haantjes manifolds, we construct the Haantjes structures of generalized Stäckel systems and, as a particular case, of the quasi-bi-Hamiltonian systems. As an application, we recover the Haantjes manifolds for the rational Calogero model with three particles...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2016
Main Authors: Tondo, G., Tempesta, P.
Format: Article
Language:English
Published: Інститут математики НАН України 2016
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/147418
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems / G. Tondo, P. Tempesta // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 44 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147418
record_format dspace
spelling Tondo, G.
Tempesta, P.
2019-02-14T18:11:05Z
2019-02-14T18:11:05Z
2016
Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems / G. Tondo, P. Tempesta // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 44 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 37J35; 70H06; 70H20; 53D05
DOI:10.3842/SIGMA.2016.023
https://nasplib.isofts.kiev.ua/handle/123456789/147418
In the context of the theory of symplectic-Haantjes manifolds, we construct the Haantjes structures of generalized Stäckel systems and, as a particular case, of the quasi-bi-Hamiltonian systems. As an application, we recover the Haantjes manifolds for the rational Calogero model with three particles and for the Benenti systems.
This paper is a contribution to the Special Issue on Analytical Mechanics and Dif ferential Geometry in honour of Sergio Benenti. The full collection is available at http://www.emis.de/journals/SIGMA/Benenti.html. The work of P.T. has been partly supported by the research project FIS2015-63966, MINECO, Spain and partly by ICMAT Severo Ochoa project SEV-2015-0554 (MINECO). G.T. acknowledges the financial support of the research project PRIN 2010-11 “Geometric and analytic theory of Hamiltonian systems in finite and infinite dimensions”. Moreover, he thanks G. Rastelli for interesting discussions about the Jacobi–Calogero model. We also thank the anonymous referees for a careful reading of the manuscript and for several useful suggestions.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems
spellingShingle Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems
Tondo, G.
Tempesta, P.
title_short Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems
title_full Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems
title_fullStr Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems
title_full_unstemmed Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems
title_sort haantjes structures for the jacobi-calogero model and the benenti systems
author Tondo, G.
Tempesta, P.
author_facet Tondo, G.
Tempesta, P.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In the context of the theory of symplectic-Haantjes manifolds, we construct the Haantjes structures of generalized Stäckel systems and, as a particular case, of the quasi-bi-Hamiltonian systems. As an application, we recover the Haantjes manifolds for the rational Calogero model with three particles and for the Benenti systems.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147418
citation_txt Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems / G. Tondo, P. Tempesta // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 44 назв. — англ.
work_keys_str_mv AT tondog haantjesstructuresforthejacobicalogeromodelandthebenentisystems
AT tempestap haantjesstructuresforthejacobicalogeromodelandthebenentisystems
first_indexed 2025-12-07T17:07:54Z
last_indexed 2025-12-07T17:07:54Z
_version_ 1850870097006034944