Doubling (Dual) Hahn Polynomials: Classification and Applications

We classify all pairs of recurrence relations in which two Hahn or dual Hahn polynomials with different parameters appear. Such couples are referred to as (dual) Hahn doubles. The idea and interest comes from an example appearing in a finite oscillator model [Jafarov E.I., Stoilova N.I., Van der Jeu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2016
Hauptverfasser: Oste, R., Van der Jeugt, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147422
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Doubling (Dual) Hahn Polynomials: Classification and Applications / R. Oste, J. Van der Jeugt // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 32 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147422
record_format dspace
spelling Oste, R.
Van der Jeugt, J.
2019-02-14T18:18:20Z
2019-02-14T18:18:20Z
2016
Doubling (Dual) Hahn Polynomials: Classification and Applications / R. Oste, J. Van der Jeugt // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 32 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33C45; 33C80; 81R05; 81Q65
DOI:10.3842/SIGMA.2016.003
https://nasplib.isofts.kiev.ua/handle/123456789/147422
We classify all pairs of recurrence relations in which two Hahn or dual Hahn polynomials with different parameters appear. Such couples are referred to as (dual) Hahn doubles. The idea and interest comes from an example appearing in a finite oscillator model [Jafarov E.I., Stoilova N.I., Van der Jeugt J., J. Phys. A: Math. Theor. 44 (2011), 265203, 15 pages, arXiv:1101.5310]. Our classification shows there exist three dual Hahn doubles and four Hahn doubles. The same technique is then applied to Racah polynomials, yielding also four doubles. Each dual Hahn (Hahn, Racah) double gives rise to an explicit new set of symmetric orthogonal polynomials related to the Christoffel and Geronimus transformations. For each case, we also have an interesting class of two-diagonal matrices with closed form expressions for the eigenvalues. This extends the class of Sylvester-Kac matrices by remarkable new test matrices. We examine also the algebraic relations underlying the dual Hahn doubles, and discuss their usefulness for the construction of new finite oscillator models.
The authors wish to thank the referees for their insightful remarks and suggestions which helped to enhance the clarity of the matter covered here.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Doubling (Dual) Hahn Polynomials: Classification and Applications
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Doubling (Dual) Hahn Polynomials: Classification and Applications
spellingShingle Doubling (Dual) Hahn Polynomials: Classification and Applications
Oste, R.
Van der Jeugt, J.
title_short Doubling (Dual) Hahn Polynomials: Classification and Applications
title_full Doubling (Dual) Hahn Polynomials: Classification and Applications
title_fullStr Doubling (Dual) Hahn Polynomials: Classification and Applications
title_full_unstemmed Doubling (Dual) Hahn Polynomials: Classification and Applications
title_sort doubling (dual) hahn polynomials: classification and applications
author Oste, R.
Van der Jeugt, J.
author_facet Oste, R.
Van der Jeugt, J.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We classify all pairs of recurrence relations in which two Hahn or dual Hahn polynomials with different parameters appear. Such couples are referred to as (dual) Hahn doubles. The idea and interest comes from an example appearing in a finite oscillator model [Jafarov E.I., Stoilova N.I., Van der Jeugt J., J. Phys. A: Math. Theor. 44 (2011), 265203, 15 pages, arXiv:1101.5310]. Our classification shows there exist three dual Hahn doubles and four Hahn doubles. The same technique is then applied to Racah polynomials, yielding also four doubles. Each dual Hahn (Hahn, Racah) double gives rise to an explicit new set of symmetric orthogonal polynomials related to the Christoffel and Geronimus transformations. For each case, we also have an interesting class of two-diagonal matrices with closed form expressions for the eigenvalues. This extends the class of Sylvester-Kac matrices by remarkable new test matrices. We examine also the algebraic relations underlying the dual Hahn doubles, and discuss their usefulness for the construction of new finite oscillator models.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147422
citation_txt Doubling (Dual) Hahn Polynomials: Classification and Applications / R. Oste, J. Van der Jeugt // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 32 назв. — англ.
work_keys_str_mv AT oster doublingdualhahnpolynomialsclassificationandapplications
AT vanderjeugtj doublingdualhahnpolynomialsclassificationandapplications
first_indexed 2025-12-07T18:27:52Z
last_indexed 2025-12-07T18:27:52Z
_version_ 1850875128273960960