Hom-Big Brackets: Theory and Applications
In this paper, we introduce the notion of hom-big brackets, which is a generalization of Kosmann-Schwarzbach's big brackets. We show that it gives rise to a graded hom-Lie algebra. Thus, it is a useful tool to study hom-structures. In particular, we use it to describe hom-Lie bialgebras and hom...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2016 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2016
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147423 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Hom-Big Brackets: Theory and Applications / L. Cai, Y. Sheng // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 33 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147423 |
|---|---|
| record_format |
dspace |
| spelling |
Cai, L. Sheng, Y. 2019-02-14T18:18:56Z 2019-02-14T18:18:56Z 2016 Hom-Big Brackets: Theory and Applications / L. Cai, Y. Sheng // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 33 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B70; 17B62 DOI:10.3842/SIGMA.2016.014 https://nasplib.isofts.kiev.ua/handle/123456789/147423 In this paper, we introduce the notion of hom-big brackets, which is a generalization of Kosmann-Schwarzbach's big brackets. We show that it gives rise to a graded hom-Lie algebra. Thus, it is a useful tool to study hom-structures. In particular, we use it to describe hom-Lie bialgebras and hom-Nijenhuis operators. We give our warmest thanks to the editor and referees for very useful comments that improve the paper. This research is supported by NSFC (11101179, 11471139) and NSF of Jilin Province (20140520054JH). en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Hom-Big Brackets: Theory and Applications Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Hom-Big Brackets: Theory and Applications |
| spellingShingle |
Hom-Big Brackets: Theory and Applications Cai, L. Sheng, Y. |
| title_short |
Hom-Big Brackets: Theory and Applications |
| title_full |
Hom-Big Brackets: Theory and Applications |
| title_fullStr |
Hom-Big Brackets: Theory and Applications |
| title_full_unstemmed |
Hom-Big Brackets: Theory and Applications |
| title_sort |
hom-big brackets: theory and applications |
| author |
Cai, L. Sheng, Y. |
| author_facet |
Cai, L. Sheng, Y. |
| publishDate |
2016 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
In this paper, we introduce the notion of hom-big brackets, which is a generalization of Kosmann-Schwarzbach's big brackets. We show that it gives rise to a graded hom-Lie algebra. Thus, it is a useful tool to study hom-structures. In particular, we use it to describe hom-Lie bialgebras and hom-Nijenhuis operators.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147423 |
| citation_txt |
Hom-Big Brackets: Theory and Applications / L. Cai, Y. Sheng // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 33 назв. — англ. |
| work_keys_str_mv |
AT cail hombigbracketstheoryandapplications AT shengy hombigbracketstheoryandapplications |
| first_indexed |
2025-12-07T21:09:05Z |
| last_indexed |
2025-12-07T21:09:05Z |
| _version_ |
1850885271461036032 |