Quasi-Bi-Hamiltonian Structures of the 2-Dimensional Kepler Problem
The existence of quasi-bi-Hamiltonian structures for the Kepler problem is studied. We first relate the superintegrability of the system with the existence of two complex functions endowed with very interesting Poisson bracket properties and then we prove the existence of a quasi-bi-Hamiltonian stru...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2016 |
| Main Authors: | Cariñena, J.F., Rañada, M.F. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2016
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/147429 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Quasi-Bi-Hamiltonian Structures of the 2-Dimensional Kepler Problem / J.F. Cariñena, M.F. Rañada // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog
by: Cariñena, J.F., et al.
Published: (2007) -
Recent Applications of the Theory of Lie Systems in Ermakov Systems
by: Cariñena, J.F., et al.
Published: (2008) -
Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds
by: Işim Efe, M., et al.
Published: (2017) -
Evolutionary Hirota Type (2+1)-Dimensional Equations: Lax Pairs, Recursion Operators and Bi-Hamiltonian Structures
by: Sheftel, M.B., et al.
Published: (2018) -
A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
by: Cariñena, J.F., et al.
Published: (2013)