A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries

We study the existence of first integrals in nonholonomic systems with symmetry. First we define the concept of M-cotangent lift of a vector field on a manifold Q in order to unify the works [Balseiro P., Arch. Ration. Mech. Anal. 214 (2014), 453-501, arXiv:1301.1091], [Fassò F., Ramos A., Sansonett...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2016
Hauptverfasser: Balseiro, P., Sansonetto, N.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147431
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries / P. Balseiro, N. Sansonetto // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 35 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147431
record_format dspace
spelling Balseiro, P.
Sansonetto, N.
2019-02-14T18:32:10Z
2019-02-14T18:32:10Z
2016
A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries / P. Balseiro, N. Sansonetto // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 35 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 70F25; 70H33; 53D20
DOI:10.3842/SIGMA.2016.018
https://nasplib.isofts.kiev.ua/handle/123456789/147431
We study the existence of first integrals in nonholonomic systems with symmetry. First we define the concept of M-cotangent lift of a vector field on a manifold Q in order to unify the works [Balseiro P., Arch. Ration. Mech. Anal. 214 (2014), 453-501, arXiv:1301.1091], [Fassò F., Ramos A., Sansonetto N., Regul. Chaotic Dyn. 12 (2007), 579-588], and [Fassò F., Giacobbe A., Sansonetto N., Rep. Math. Phys. 62 (2008), 345-367]. Second, we study gauge symmetries and gauge momenta, in the cases in which there are the symmetries that satisfy the so-called vertical symmetry condition. Under such condition we can predict the number of linearly independent first integrals (that are gauge momenta). We illustrate the theory with two examples.
This paper is a contribution to the Special Issue on Analytical Mechanics and Dif ferential Geometry in honour of Sergio Benenti. The full collection is available at http://www.emis.de/journals/SIGMA/Benenti.html. This work is partially supported by the research projects Symmetries and integrability of nonholonomic mechanical systems of the University of Padova. N.S. wishes to thank IMPA and H. Bursztyn for the kind hospitality during which this work took origin. P.B. thanks the financial support of CAPES (grants PVE 11/2012 and PVE 089/2013) and CNPq’s Universal grant. We also thank the anonymous referees for their useful comment.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries
spellingShingle A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries
Balseiro, P.
Sansonetto, N.
title_short A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries
title_full A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries
title_fullStr A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries
title_full_unstemmed A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries
title_sort geometric characterization of certain first integrals for nonholonomic systems with symmetries
author Balseiro, P.
Sansonetto, N.
author_facet Balseiro, P.
Sansonetto, N.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study the existence of first integrals in nonholonomic systems with symmetry. First we define the concept of M-cotangent lift of a vector field on a manifold Q in order to unify the works [Balseiro P., Arch. Ration. Mech. Anal. 214 (2014), 453-501, arXiv:1301.1091], [Fassò F., Ramos A., Sansonetto N., Regul. Chaotic Dyn. 12 (2007), 579-588], and [Fassò F., Giacobbe A., Sansonetto N., Rep. Math. Phys. 62 (2008), 345-367]. Second, we study gauge symmetries and gauge momenta, in the cases in which there are the symmetries that satisfy the so-called vertical symmetry condition. Under such condition we can predict the number of linearly independent first integrals (that are gauge momenta). We illustrate the theory with two examples.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147431
citation_txt A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries / P. Balseiro, N. Sansonetto // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 35 назв. — англ.
work_keys_str_mv AT balseirop ageometriccharacterizationofcertainfirstintegralsfornonholonomicsystemswithsymmetries
AT sansonetton ageometriccharacterizationofcertainfirstintegralsfornonholonomicsystemswithsymmetries
AT balseirop geometriccharacterizationofcertainfirstintegralsfornonholonomicsystemswithsymmetries
AT sansonetton geometriccharacterizationofcertainfirstintegralsfornonholonomicsystemswithsymmetries
first_indexed 2025-11-30T20:59:56Z
last_indexed 2025-11-30T20:59:56Z
_version_ 1850858511382085632