The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces
The third, fifth and sixth Painlevé equations are studied by means of the weighted projective spaces CP³(p,q,r,s) with suitable weights (p,q,r,s) determined by the Newton polyhedrons of the equations. Singular normal forms of the equations, symplectic atlases of the spaces of initial conditions, Ric...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2016 |
| 1. Verfasser: | Chiba, H. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2016
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147432 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces / H. Chiba // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Isomonodromy for the Degenerate Fifth Painlevé Equation
von: Acosta-Humánez, P.B., et al.
Veröffentlicht: (2017) -
Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation
von: Chiba, H.
Veröffentlicht: (2017) -
Tronquée Solutions of the Third and Fourth Painlevé Equations
von: Xia, X.
Veröffentlicht: (2018) -
Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin
von: Kitaev, A.V.
Veröffentlicht: (2019) -
Charaka Samhita. The First, Fourth (Partial), Fifth, and Sixth Chapters of the First Section / Translation of the Sanskrit and Comments by D. Burba
von: D. V. Burba
Veröffentlicht: (2017)