Quantum Curve and the First Painlevé Equation

We show that the topological recursion for the (semi-classical) spectral curve of the first Painlevé equation PI gives a WKB solution for the isomonodromy problem for PI. In other words, the isomonodromy system is a quantum curve in the sense of [Dumitrescu O., Mulase M., Lett. Math. Phys. 104 (2014...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2016
Автори: Iwaki, K., Saenz, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147434
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum Curve and the First Painlevé Equation / K. Iwaki, A. Saenz // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147434
record_format dspace
spelling Iwaki, K.
Saenz, A.
2019-02-14T18:33:32Z
2019-02-14T18:33:32Z
2016
Quantum Curve and the First Painlevé Equation / K. Iwaki, A. Saenz // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 34M55; 81T45; 34M60; 34M56
DOI:10.3842/SIGMA.2016.011
https://nasplib.isofts.kiev.ua/handle/123456789/147434
We show that the topological recursion for the (semi-classical) spectral curve of the first Painlevé equation PI gives a WKB solution for the isomonodromy problem for PI. In other words, the isomonodromy system is a quantum curve in the sense of [Dumitrescu O., Mulase M., Lett. Math. Phys. 104 (2014), 635-671, arXiv:1310.6022] and [Dumitrescu O., Mulase M., arXiv:1411.1023].
The authors are grateful to Motohico Mulase for many valuable comments, discussion and continuous encouragements. They also thank Olivia Dumitrescu and Bertrand Eynard for helpful comments. K.I. work is supported by the JSPS for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers “Mathematical Science of Symmetry, Topology and Moduli, Evolution of International Research Network based on Osaka City University Advanced Mathematical Institute (OCAMI)”. A.S. work is supported by UC Davis under the Graduate Research Mentorship fellowship. This article is written during the K.I. stay at The University of California, Davis. K.I. would also like to thank the institute for its support and hospitality.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Quantum Curve and the First Painlevé Equation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Quantum Curve and the First Painlevé Equation
spellingShingle Quantum Curve and the First Painlevé Equation
Iwaki, K.
Saenz, A.
title_short Quantum Curve and the First Painlevé Equation
title_full Quantum Curve and the First Painlevé Equation
title_fullStr Quantum Curve and the First Painlevé Equation
title_full_unstemmed Quantum Curve and the First Painlevé Equation
title_sort quantum curve and the first painlevé equation
author Iwaki, K.
Saenz, A.
author_facet Iwaki, K.
Saenz, A.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We show that the topological recursion for the (semi-classical) spectral curve of the first Painlevé equation PI gives a WKB solution for the isomonodromy problem for PI. In other words, the isomonodromy system is a quantum curve in the sense of [Dumitrescu O., Mulase M., Lett. Math. Phys. 104 (2014), 635-671, arXiv:1310.6022] and [Dumitrescu O., Mulase M., arXiv:1411.1023].
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147434
citation_txt Quantum Curve and the First Painlevé Equation / K. Iwaki, A. Saenz // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ.
work_keys_str_mv AT iwakik quantumcurveandthefirstpainleveequation
AT saenza quantumcurveandthefirstpainleveequation
first_indexed 2025-12-07T21:13:24Z
last_indexed 2025-12-07T21:13:24Z
_version_ 1850885542946799616