Features of stochastic decay in the magnetoactive plasma

The regular and stochastic decay processes of transverse electromagnetic waves in the magnetoactive plasma investigated. The essential attention noted to decay into oscillations with dynamics that takes into account ion plasma component. The threshold of transition into dynamics chaos defined. It w...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2018
Main Authors: Buts, V.A., Kovalchuk, I.K.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/147439
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Features of stochastic decay in the magnetoactive plasma / V.A. Buts, I.K. Kovalchuk // Вопросы атомной науки и техники. — 2018. — № 4. — С. 208-212. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147439
record_format dspace
spelling Buts, V.A.
Kovalchuk, I.K.
2019-02-14T18:41:41Z
2019-02-14T18:41:41Z
2018
Features of stochastic decay in the magnetoactive plasma / V.A. Buts, I.K. Kovalchuk // Вопросы атомной науки и техники. — 2018. — № 4. — С. 208-212. — Бібліогр.: 15 назв. — англ.
1562-6016
PACS: 52.35.Mw
https://nasplib.isofts.kiev.ua/handle/123456789/147439
The regular and stochastic decay processes of transverse electromagnetic waves in the magnetoactive plasma investigated. The essential attention noted to decay into oscillations with dynamics that takes into account ion plasma component. The threshold of transition into dynamics chaos defined. It was shown that transition may take place at abnormally small amplitudes of decaying wave. Dynamics of fields in the dynamics chaos regime investigated.
Досліджені регулярний і стохастичний процеси розпаду поперечної електромагнітної хвилі в магнітоактивній плазмі. Особлива увага приділена розпаду на низькочастотні коливання за участю динаміки іонної компоненти плазми. Визначений поріг переходу в режим динамічного хаосу. Показано, що він може відбуватися при аномально малих амплітудах хвилі, що розпадається. Досліджена динаміка полів у режимі динамічного хаосу.
Исследованы регулярный и стохастический процессы распада поперечной электромагнитной волны в магнитоактивной плазме. Особое внимание уделено распаду на низкочастотные колебания с участием динамики ионной компоненты плазмы. Определен порог перехода в режим динамического хаоса. Показано, что он может происходить при аномально малых амплитудах распадающейся волны. Исследована динамика полей в режиме динамического хаоса.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Нелинейные процессы
Features of stochastic decay in the magnetoactive plasma
Особливості стохастичного розпаду в магнітоактивній плазмі
Особенности стохастического распада в магнитоактивной плазме
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Features of stochastic decay in the magnetoactive plasma
spellingShingle Features of stochastic decay in the magnetoactive plasma
Buts, V.A.
Kovalchuk, I.K.
Нелинейные процессы
title_short Features of stochastic decay in the magnetoactive plasma
title_full Features of stochastic decay in the magnetoactive plasma
title_fullStr Features of stochastic decay in the magnetoactive plasma
title_full_unstemmed Features of stochastic decay in the magnetoactive plasma
title_sort features of stochastic decay in the magnetoactive plasma
author Buts, V.A.
Kovalchuk, I.K.
author_facet Buts, V.A.
Kovalchuk, I.K.
topic Нелинейные процессы
topic_facet Нелинейные процессы
publishDate 2018
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Особливості стохастичного розпаду в магнітоактивній плазмі
Особенности стохастического распада в магнитоактивной плазме
description The regular and stochastic decay processes of transverse electromagnetic waves in the magnetoactive plasma investigated. The essential attention noted to decay into oscillations with dynamics that takes into account ion plasma component. The threshold of transition into dynamics chaos defined. It was shown that transition may take place at abnormally small amplitudes of decaying wave. Dynamics of fields in the dynamics chaos regime investigated. Досліджені регулярний і стохастичний процеси розпаду поперечної електромагнітної хвилі в магнітоактивній плазмі. Особлива увага приділена розпаду на низькочастотні коливання за участю динаміки іонної компоненти плазми. Визначений поріг переходу в режим динамічного хаосу. Показано, що він може відбуватися при аномально малих амплітудах хвилі, що розпадається. Досліджена динаміка полів у режимі динамічного хаосу. Исследованы регулярный и стохастический процессы распада поперечной электромагнитной волны в магнитоактивной плазме. Особое внимание уделено распаду на низкочастотные колебания с участием динамики ионной компоненты плазмы. Определен порог перехода в режим динамического хаоса. Показано, что он может происходить при аномально малых амплитудах распадающейся волны. Исследована динамика полей в режиме динамического хаоса.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/147439
citation_txt Features of stochastic decay in the magnetoactive plasma / V.A. Buts, I.K. Kovalchuk // Вопросы атомной науки и техники. — 2018. — № 4. — С. 208-212. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT butsva featuresofstochasticdecayinthemagnetoactiveplasma
AT kovalchukik featuresofstochasticdecayinthemagnetoactiveplasma
AT butsva osoblivostístohastičnogorozpaduvmagnítoaktivníiplazmí
AT kovalchukik osoblivostístohastičnogorozpaduvmagnítoaktivníiplazmí
AT butsva osobennostistohastičeskogoraspadavmagnitoaktivnoiplazme
AT kovalchukik osobennostistohastičeskogoraspadavmagnitoaktivnoiplazme
first_indexed 2025-11-24T06:31:16Z
last_indexed 2025-11-24T06:31:16Z
_version_ 1850843064057200640
fulltext ISSN 1562-6016. ВАНТ. 2018. №4(116) 208 NONLINEAR PROCESSES FEATURES OF STOCHASTIC DECAY IN THE MAGNETOACTIVE PLASMA V.A. Buts1,2,3, I.K. Kovalchuk1 1National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 2Institute of Radio Astronomy of NAS of Ukraine, Kharkov, Ukraine; 3V.N. Karazin Kharkiv National University, Kharkov, Ukraine E-mail: vbuts@kipt.kharkov.ua, kovalchuk-ik@rambler.ru The regular and stochastic decay processes of transverse electromagnetic waves in the magnetoactive plasma in- vestigated. The essential attention noted to decay into oscillations with dynamics that takes into account ion plasma component. The threshold of transition into dynamics chaos defined. It was shown that transition may take place at abnormally small amplitudes of decaying wave. Dynamics of fields in the dynamics chaos regime investigated. PACS: 52.35.Mw INTRODUCTION Wave interaction is one of the fundamental process- es in the plasma physics and plasma electronics. The linear processes of such interaction well investigated. The weakly nonlinear interactions are enough well in- vestigated essentially three wave interaction in isotropic plasma are investigate in detail (see [1 - 3]). In particu- lar, in the work [1], in general the algorithm that allows to obtain equations describing not only wave interaction in isotropic matter but in gyrotropic one too was formu- lated. But, it is needed to note that dynamics in gyro- tropic matters practically was not studied. It is condi- tioned, first of all that this studying has large technical difficulties. These difficulties is conditioned first of all by abundant dispersion properties of gyrotropic matters (magnetoactive plasma). In connection with these diffi- culties the issue about three wave interaction in gyro- tropic plasma was only slightly affected in [4]. It needed to note also one feature of work where three wave pro- cesses in plasma consider. This connected with that practically in all works the dynamics of electron com- ponent of plasma only considered In presented work the process of three wave interac- tion magnetoactive plasma is considering. In this case as ordinary decay as modified one will considered. The modified decay is such process where linear stage is characterized by increment that is large than frequency of low frequency wave taking part in the process of three wave interaction. Below in the section 2 the equa- tions describing three wave interaction with taking into account low frequency oscillations properties of that in particular defined by ion component of plasma. In this section, the analytical expression for criterion of transi- tion of regular dynamics into stochastic decay regime obtained. In the third section the process of stochastic dynamic of interacting wave considered. In conclusion the main results formulated. 1. FORMULATION OF PROBLEM AND BASIC EQUATIONS Nonlinear wave interaction in plasma well studied area of plasma physics. Usually studying of processes of such wave interaction is limited by weakly nonlinear approximation. In this approach, it is supposed that in the interaction the natural waves of electrodynamics system take part. Amplitudes of these waves slowly vary in time and space under influence of nonlinear pro- cess. The simplest case when three waves take part in interaction studied most in detail. The basic approaches and results in this area presented, for example, in works [1 - 3]. In the work [5, 6] it was shown that three wave decay processes may be chaotic. The criterion of trans- fer to chaos has been found in this work. Some aspects of the dynamic of chaotic decays considered in [7 - 12]. The results of numerical investigation presented in these work, the spectrum and correlation functions presented too. It was shown if transition of decay into chaotic re- gime takes place, spectrum of interacting waves is ex- panding. Width of correlation function is finite. The results of analytical and numerical investigations have been confirmed by experiment. In this work the process of three wave decay in un- limited gyrotropic matter (magnetoactive plasma) will be investigated. It is supposed that external uniform magnetic field is directed along z axis and interacting waves may propagate under arbitrary angle relatively magnetic field direction. The space and temporal de- pendence of electromagnetic field may be presented as sum eigen waves and has next form ( , ) ( , ) exp( )m m m m E r t E r t i t ik rω= −∑       , (1) where ( , )mE r t   – complex slowly varying amplitude of wave, mω and mk  – are frequency and wave vector cor- respondingly. Algorithm for obtaining equations for slowly varying amplitudes of waves taking part in decay process in the infinitely extended uniform plasma pre- sented in works [1 - 3] in detail. In [1] it generalized for magnetoactive plasma. Nonlinear dispersion equation for one of the interacting wave has the following form: ( ) ( ) 222 * 2 * 2 4 , m m m m m m nl m k e k e e E c i e j c α αβ β ω e πω   − − =    =     (2) where mE – module of complex of amplitude of wave taking part in decay process, /m m me E E=   – unit wave vector of polarization, αβe – permittivity tensor of mailto:vbuts@kipt.kharkov.ua mailto:kovalchuk-ik@rambler.ru ISSN 1562-6016. ВАНТ. 2018. №4(116) 209 magnetoactive plasma, c – velocity of light, ( )nl m j  – nonlinear current. Expressions for components of per- mittivity tensor for magnetoactive plasma may be find in [13, 14]. In the nonlinear addendums (items, summands) tak- ing into consideration multiplication of perturbation of density and velocity plasma waves taking part in decay process. The multiplication of perturbation of density and velocity of the plasma waves taking part in decay process has been taken into consideration in the nonlin- ear items. In this case perturbations corresponding linear approximation are used. In order to right part of equa- tion (2) was resonant to the left part the frequencies and wave vectors must satisfy to synchronism conditions 1 2 3 1 2 3, ,k k kω ω ω= + = +    (3) where 1ω , 1k  – frequency and wave vector of decaying waves, 2ω , 3ω – frequencies of waves arising in the decay, 2k  , 3k  – their wave vectors. Equation (2) for decaying wave may be presented in the form: ( )* 1 12 1 4( , ) nlD k E i e j c πωω =    . (4) Here ( ) 222 * 2( , )D k k ek e e c α αβ β ωω e= − −    . As a re- sult of nonlinear interaction amplitudes of wave slowly vary. So modes taking part in decay process is not mon- ochromatic. They are wave packets with some spreading on frequencies and wave vectors. So expression for dis- persion equation may be decomposed into Taylor series on small variations on frequency and wave vector from values that are dispersion of monochrome linear disper- sion equation. Function ( , )D kω  may be presented in the form ( ) ( )1 1 1 1 1 1 1 1 ( , ) ( , ) ( , ) ( , ) D k D kD k D k k k k ω ω ω ω ω ω ω ∂ ∂ = + − + − ∂ ∂        . (5) Wave with parameters ( )1 1,kω  is eigen modes for considering electrodynamic system, so the next condi- tion is satisfies: 1 1( , ) 0D kω =  . (6) To transfer to space and temporal variables it is needed to perform. The inverse Fourier transformation is needed to use to the nonlinear dispersion equation for transfer to space and time variables. This procedure described in detail in [1, 3]. As a result taking into ac- count condition (6) differential equation in partial deriv- atives for slowly varying amplitudes of interacting waves are obtained. Below equation for decaying wave is presented: ( ) ( ) ( ) * 11 1 1 1 1 1 2 1 1 1 4 , , nl gr e jE Ev k i t r c A k πω ω ω ∂ ∂ + = ∂ ∂       , (7) where ( )1 1,grv kω   – group velocity of this wave, ( ) ( ), , i i i i i D k A k ω ω ω ∂ = ∂   . Index j points to any interact- ing waves. The perturbations of density and velocity of plasma electrons and ions, containing in nonlinear current, can be expressed through slowly varying amplitudes of waves, taking part in nonlinear interaction. These ex- pressions may be obtained from linear approach of hy- drodynamics equations. Analogous equations may be obtained for slowly varying amplitudes that waves which be excited in the decay process. As result, analyt- ical expressions for right parts of equations describing nonlinear wave interaction of three waves may be ob- tained. These expressions are lengthy, so do not present here. In the compact form equations describing nonlinear interaction in particular wave decay may be presented in next form: 1 2 3 *2 1 3 2 2 *3 3 3 1 22 , , , a Va a t a Va a t a a Va a t ω ∂ = ∂ ∂ = − ∂ ∂ + = − ∂ (8) where V – matrix elements of interaction. The change of variables describing electromagnetic field presented in [1] and using of conservation laws for energy and momentum allows to transform set (8) to form where matrix elements of interaction containing in different equations are equal. In the equation (8) there was taken into account that third low frequency wave itself may slowly vary. So we conserve it oscillation properties. If amplitude of decaying wave is enough small that incre- ment of decay instability is less than frequency of LF wave the third equation of set (8) may be done short- ened. It has form: *3 1 2 a Va a t ∂ = − ∂ . (9) In this case set of equations (8) coincides with one that presented by many others (see, for example [1 - 3)]. It is possible to use results obtained in these works. The existing in this set integrals, named Manly-Row correla- tion, are most impotent for us: 2 2 1 2 2 2 1 3 , . a a const a a const + = + = (10) There are also two integrals: 2 2 2 1 1 2 2 3 3 1 2 3 , sin , a a a const a a a const ω ω ωΣ = + + = Φ = . (11) where Σ – total energy of interacting waves, 1 2 3 1 2 3, , ,ϕ ϕ ϕ ϕ ϕ ϕΦ = − − – phases of slowly varying complex amplitudes 1 2 3, ,a a a ( )( )expj j ja a iϕ= . Solution of set (8) taking into account equation (9) in- vestigated in [2]. The qualitative analysis presented in [1]. Decay dynamics is periodical exchange by energy between interacting modes. Coming back to set of equations (8) it is possible to define criterion for onset of regime with dynamics cha- os. This regime arises when amplitude of decaying wave will be enough large that increment of decay in- stability will be larger than frequency of LF wave. Such ISSN 1562-6016. ВАНТ. 2018. №4(116) 210 estimation obtained in work [5, 6]. We may use this estimation: ( )2 3 10 min , a V ω ω > , (12) where 10a – initial amplitudes of decaying wave. As it seen from expression (12) this phenomenon have threshold character. 2. ANALYTICAL EXPRESSION CRITERION OF ARISING OF STOCHASTIC INSTABILITY Expression (12) is general. It does not contain pa- rameters of the waves taking part in interaction. Earlier expression (12) was concretized for case of waves that characteristic was defined by electron component of plasma only. Below we will consider case of interaction of wave property of which defined not only by electron components, but ion one too. Further we will consider such decay when frequen- cies of wave nonlinearly interacting satisfy following relations: 1 2 3 1 2 3, .k k kω ω ω≈ >> ≈ ≈ (13) As 1ω and 2ω in magnetoactive plasma it can be HF electromagnetic waves, which frequencies are very close. In works [7 - 12] the case is considered when lowest frequency was defined by electron component dynamics and its frequency was order Langmuir one. In this work we interest by decay in which dispersion properties of low frequency significantly defined by ion component of the plasma. In particular, it may be Alfven wave. In this case it's frequency is close to ion cyclotron frequency. One can expect that in this case threshold of transfer to stochasticity will be more less than in case Langmuir waves. The waves with low fre- quency that are excited in such decay may be used for heating of ion plasma. Thus we have physical mecha- nism, allowing excites LF waves in plasma. These waves can be used for heating plasma ions. Let's get an analytical expression for the criterion of transition to chaotic dynamics. For this we use equation (7) that after simplification may be presented in such form: * 1 11 1 2 1 4 nle jE t Ac πω∂ = − ∂   . (14) Expression for current density containing in right part of equation (13) may be presented as following: ( ) ( )(1) 1 2 3 3 2nl e e e ej e n v e n v= − −      . (15) Expression for perturbation of electron density is: 0 3 3 32 3 z e z e n ek n i E m ω = − . (16) From this follows: 0 3 2 3 2 3 2 2 32 2 23 3 1z z e e z z ee n ek een v E E E E mm ωω ω = − ≈  . (17) Using these expressions the (14) may be presented in the following form: 1 2 3 E VE E t ∂ = ∂ . (18) From these the expression for matrix element fol- lows: 2 3 2 2 1 3 1pe e ek V m c A ω ω = . (19) It is needed to note that value of this element is in- versely proportional to square of low frequency. This means that width of nonlinear resonance becomes the large the lower is frequency of LF wave. About nonlin- ear resonance see work [5, 6]. Thus in our case not only distance between nonlinear resonances decreases (this distance decreases proportional to first power of fre- quency of LF wave) but width of nonlinear resonance increase.(inversely proportional to square frequency of LF wave). As a result value of strength of decaying HF wave that is needed for appearance of regime with dy- namics chaos will be proportional to third power the frequency of LF wave: 2 3 1 3 2 3 e th pe m c A E ek ω ω = , (20) where em – mass of electron, peω – electron plasma frequency. From (20) it follows that strength of HF wave which is needed for appearance of stochastic de- cay will be abnormally small for decay with participa- tion of waves which properties defined by ions of plas- ma. 3. DYNAMICS OF WAVES IN THE STOCHASTIC REGIME In the overwhelming majority of cases wave dynam- ics in the stochastic regime is fact that main sensitive and easily varying parameters of the interacting waves are their phases. Additional argument for such affirma- tion is well known fact that amplitudes of interacting waves may be considered in many cases as adiabatic invariants. Besides, if do not concretize reason of ap- pearance of chaotic regime in many cases analysis of chaotic regimes occurses namely with accounting of this fact. In particular, such analysis was used in work [2]. Below we will follow to this analyses algorithm. The set of equations (8) describes three wave decay in that case when waves participating in nonlinear inter- action are regular. In the opposite case nonlinear inter- action is becoming stochastic. This process is describing by equations of decay process with random phases. Their obtaining described in detail in [1, 3]. After transi- tion of regular decay process into stochastic regime it dynamics may be described by equations with random phases. We use algorithm described in [1]. First of all we note that set of equations (8) may be presented in next way ( ) ( ) ( ) 2 1 * * * 1 2 3 1 2 3 2 2 * * * 1 2 3 1 2 3 2 3 * * * 1 2 3 1 2 3 , , . a V a a a a a a t a V a a a a a a t a V a a a a a a t ∂ = + ∂ ∂ = − + ∂ ∂ = − + ∂ (21) After complex transformations set of equations for modules of slowly varying complex wave amplitudes with random phases will have form: ISSN 1562-6016. ВАНТ. 2018. №4(116) 211 ( )1 2 3 1 2 1 3 32 1 , , N W N N N N N N t NN N t t t ∂ = − − ∂ ∂∂ ∂ = = − ∂ ∂ ∂ (22) where 2 i iN a= , 2W V τ= , τ – correlation time be- tween phases.. This set of equations as (8) has integrals (10). Manly-Row correlations allow to transform set of equations (22) to one ordinary differential equation of first order: ( )2 12 131 1 12 13 1 23 3 3 C CN W N C C N t ∂  = − + + ∂   , (23) or ( )( )(1) (2)1 1 1 1 13 N W N N N N t ∂ = − − ∂ , (23a) where 12 10 20C N N= + , 13 10 30C N N= + , 10 20 30, ,N N N – initial values of 1 2 3, ,N N N correspondingly, ( )(1,2) 2 2 1 12 13 12 12 13 13 1 1 3 3 N C C C C C C= + ± − + . Unlike from (8) equation (23) has stationary points that equal to (1) 1N and (2) 1N . Analytical analysis shows that first of them is unstable and second is stable. It may show when time tends to infinity solution tends to stable stationary point independent from initial conditions. Expressions for values of stationary point of 2 3,N N do not present here because they are enough complex. Sta- tionary values for 1 2 3, ,N N N when conditions 10 20 30,N N N>> are satisfied have the form: ( ) ( ) ( ) (2) 1 10 20 30 (2) 2 10 20 30 (2) 3 10 20 30 1 2 , 6 1 4 5 , 6 1 4 5 . 6 N N N N N N N N N N N N = + + = + − = − + . (24) As it seen from expressions (24) in the stochastic re- gime of three wave decay when the amplitude of decay- ing wave is significantly large than amplitudes of other waves on large temporal interval the square of first wave module will have one third part of it initial value. Squares of modules of waves that generated in decay process essentially increase and will have two third parts from square of initial amplitude value of first wave. But almost all energy will be contained in the first and second waves (because energy of each wave is proportional it frequency 2 i i iaωΣ = )). CONCLUSIONS Note the most important results of presented analy- sis. First of all note attention that threshold of appear- ance of regimes with dynamics chaos at three wave in- teraction abnormally fast decreases when frequency of LF wave participating in interaction decreases. In par- ticular, this means that practically at any strength of transverse wave that propagates in plasma there are re- gimes with dynamics chaos at participation of LF wave that properties are defined by ion component of plasma. But it is needed to note that such regime may not be immediately detected from characteristics of transverse LF waves. The thing is the smaller amplitude of the HF wave, the smaller diffusion coefficient that characterizes spreading characteristics (first of all of frequency) HF wave. This dynamics (chaotic) may be most significant for ion component of plasma. Plasma ions may enough effectively heat. But note that with increasing ampli- tudes of decaying wave electron component of plasma may participate in stochastic dynamics. In this case this component (electron) may take main energy stream of decaying wave. In this case the heating of ion compo- nent of plasma may decrease. The stochastic regime of decay analyzed. The stable stationary point is defined. It was shown when square of module of initial amplitude of decaying wave essential- ly exceeds analogous value of others waves in the stable stationary point the first wave has only third part from initial value. Square of amplitude modules of two others wave are increasing to two third parts of this value of first wave. Note that above one stage of regular and chaotic three wave decay considered. Such stages may be much. High frequency wave appeared as result of first stage may decay into other more low frequency transverse wave and low frequency one. Such stages may organize cascade of enough number elementary stages. The dy- namics of such decays significantly were studied in work [7, 15]. In this case much larger part of energy may be transferred into low frequency region when exist only one stage of decay. It needed to note that above only one low frequency branch of oscillation was take into consideration. In real experiments may participate other branches. The theory of such decays is complex. But it may expect that in these cases namely low fre- quency region of wave spectrum will be saturated by significant amount of energy. Such mechanism of ener- gy transfer of regular high frequency wave into region of low frequency wave with stochastic dynamics appar- ently may be effectively used for heating of plasma ion component. REFERENCES 1. B.B. Kadomtsev. Collective phenomena in plasma. M.: “Nauka”. Gl. Red. Phis.-mat. Lit. 1988. 2. H Wilhelmsson, J. Weiland. Coherent non-linear interaction of waves in plasmas. M.: “Ener- goatomizdat”, 1981 (in Russian). 3. V.N. Tsitovich. Nonlinear effects in plasm. M.: “Nauka”. Gl. Red. Phis.-mat. Lit. 1967 (in Russian). 4. A.N. Antonov, V.A. Buts, I.K. Kovalchuk, O.F. Kovpik, E.A. Kornilov, V.G. Svichensky, D.V. Tarasov. Regular and Stochastic decays of Waves in a Plasma Cavity // Plasma Physics Re- ports. 2012, v. 38, № 8, p. 636-650. 5. V.A. Buts, A.N. Kupriyanov, O.V. Manujlenko, A.P. Tolstoluzhsky. Instability and dynamics chaos at weakly nonlinear interaction of waves // Izvestiya VUZov “PHD”. 1993, v. 1, № 1, № 2, p. 57-62 (in Russian). 6. V.A. Buts, O.V. Manujlenko, K.N. Stepanov, A.P. Tolstoluzhsky. Chaotic dynamics of charged particles at wave-particle type interaction and chaot- ic dynamics at weak nonlinear interaction of wave- ISSN 1562-6016. ВАНТ. 2018. №4(116) 212 wave type// Plasma physics. 1995, v. 20, № 9, p. 794-801. 7. V.A. Buts, I.K. Kovalchuk, D.V. Tarasov, A.P. Tol- stoluzhsky. The regular and chaotic dynamics of weak-nonlinear interaction of wave // Electromag- netic Waves and Electronic Systems. 2011, v. 16, № 1, p. 51-61. 8. A.N. Antonov, V.A. Buts, I.K. Kovalchuk, O.F. Kovpik, E.A. Kornilov, V.G. Svichensky, D.V. Tarasov. Investigation of chaotic decay in the resonator filled with plasma // Problems of Atomic Science and Technology. Series “Plasma Physics”. 2011, № 1, p. 89-91. 9. V.A. Buts, I.K. Kovalchuk. Dynamics of three wave stochastic decays in nonlinear matter // Problems of Atomic Science and Technology. Series “Plasma Physics”. 2016, № 6, p. 156-159. 10. A.N. Antonov, V.A. Buts, I.K. Kovalchuk, O.F. Kovpik, E.A. Kornilov, V.G. Svichensky, D.V. Tarasov. The peculiarities stochastic heating of the plasma in plasma resonator // Problems of Atom- ic Science and Technology. Series “Plasma Phys- ics”. 2014, № 6, p. 87-90. 11. A.N. Antonov, V.A. Buts, A.G. Zagorodnij, et al. Stoxasticheskij nagrev plazmy v plazmennom re- zonatore // Fizicheskie Osnovy Priborostroeniya. 2014, v. 3, № 3, с. 72-84 (in Russian). 12. V.A. Buts, I.K. Kovalchuk. Dynamics of three wave stochastic decays in nonlinear matter // Problems of Atomic Science and Technology. Series “Plasma Physics”. 2016, № 6, p. 156-159. 13. Electrodynamics of Plasma / Ed. A.I. Akhiyezer. M.: “Nauka”, 1974 (in Russian). 14. A.V. Aleksandrov, D.S. Bogdankevich, A.A. Rukhadze. The basis of plasma electrodynamics. M.: “Visshaya Shkola”. 1988 (in Russian). 15. V.A. Buts, I.K. Kovalchuk, D.V. Tarasov, A.P. Tolstoluzhsky. Peculiarity of chaotic and regu- lar dynamics of waves. 2012. http://arxiv.org/abc/1210.6788. Article received 01.06.2018 ОСОБЕННОСТИ СТОХАСТИЧЕСКОГО РАСПАДА В МАГНИТОАКТИВНОЙ ПЛАЗМЕ В.А. Буц, И.К. Ковальчук Исследованы регулярный и стохастический процессы распада поперечной электромагнитной волны в магнитоактивной плазме. Особое внимание уделено распаду на низкочастотные колебания с участием дина- мики ионной компоненты плазмы. Определен порог перехода в режим динамического хаоса. Показано, что он может происходить при аномально малых амплитудах распадающейся волны. Исследована динамика полей в режиме динамического хаоса. ОСОБЛИВОСТІ СТОХАСТИЧНОГО РОЗПАДУ В МАГНІТОАКТИВНІЙ ПЛАЗМІ В.О. Буц, І.К. Ковальчук Досліджені регулярний і стохастичний процеси розпаду поперечної електромагнітної хвилі в магнітоак- тивній плазмі. Особлива увага приділена розпаду на низькочастотні коливання за участю динаміки іонної компоненти плазми. Визначений поріг переходу в режим динамічного хаосу. Показано, що він може відбу- ватися при аномально малих амплітудах хвилі, що розпадається. Досліджена динаміка полів у режимі дина- мічного хаосу. http://arxiv.org/abc/1210.6788 INTRODUCTION 1. FORMULATION OF PROBLEM AND BASIC EQUATIONS 2. ANALYTICAL EXPRESSION CRITERION OF ARISING OF STOCHASTIC INSTABILITY 3. DYNAMICS OF WAVES IN THE STOCHASTIC REGIME CONCLUSIONS references ОСОБЕННОСТИ СТОХАСТИЧЕСКОГО РАСПАДА В МАГНИТОАКТИВНОЙ ПЛАЗМЕ ОСОБЛИВОСТІ СТОХАСТИЧНОГО РОЗПАДУ В МАГНІТОАКТИВНІЙ ПЛАЗМІ