Quantum-mechanical simulations of interaction of many-electron quantum systems with ionizing laser pulses

We develop parallel program for numerical simulation of the interaction of intense laser pulses with manyelectron atoms on the basis of the time-dependent Kohn-Sham equations. It is shown that the use of modern computer clusters makes it possible to solve these equations for a wide class of atoms in...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2018
Main Authors: Romanov, A.A., Silaev, A.A., Smirnova, D.A., Sarantseva, T.S., Minina, A.A., Frolov, M.V., Vvedenskii, N.V.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/147453
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Quantum-mechanical simulations of interaction of many-electron quantum systems with ionizing laser pulses / A.A. Romanov, A.A. Silaev, D.A. Smirnova, T.S. Sarantseva, A.A. Minina, M.V. Frolov, N.V. Vvedenskii // Вопросы атомной науки и техники. — 2018. — № 4. — С. 277-281. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147453
record_format dspace
spelling Romanov, A.A.
Silaev, A.A.
Smirnova, D.A.
Sarantseva, T.S.
Minina, A.A.
Frolov, M.V.
Vvedenskii, N.V.
2019-02-14T18:53:29Z
2019-02-14T18:53:29Z
2018
Quantum-mechanical simulations of interaction of many-electron quantum systems with ionizing laser pulses / A.A. Romanov, A.A. Silaev, D.A. Smirnova, T.S. Sarantseva, A.A. Minina, M.V. Frolov, N.V. Vvedenskii // Вопросы атомной науки и техники. — 2018. — № 4. — С. 277-281. — Бібліогр.: 25 назв. — англ.
1562-6016
PACS: 52.38.-r, 31.15.ee, 32.80.-t
https://nasplib.isofts.kiev.ua/handle/123456789/147453
We develop parallel program for numerical simulation of the interaction of intense laser pulses with manyelectron atoms on the basis of the time-dependent Kohn-Sham equations. It is shown that the use of modern computer clusters makes it possible to solve these equations for a wide class of atoms in a relatively small time, determined by the parameters of the laser pulse and electronic configuration of the atom. High accuracy of the numerical code is demonstrated on the example of calculating the high-frequency spectrum of electron current excited during ionization of noble gas atoms by few-cycle laser pulse.
Розробляється паралельний програмний код для чисельного моделювання взаємодії інтенсивних лазерних імпульсів з багатоелектронними атомами на основі нестаціонарного методу функціонала щільності. Показується, що використання сучасних багатопроцесорних обчислювальних кластерів дозволяє розв’язати нестаціонарні рівняння Кона-Шема для широкого класу атомів за відносно невеликий час, що визначається параметрами лазерного імпульсу і електронною конфігурацією атома. Демонстрація роботи чисельного коду представлена на прикладі розрахунку спектра високочастотного електронного струму, що збуджується при іонізації атомів інертних газів коротким лазерним імпульсом.
Разрабатывается параллельный программный код для численного моделирования взаимодействия интенсивных лазерных импульсов с многоэлектронными атомами на основе нестационарного метода функционала плотности. Показывается, что использование современных многопроцессорных вычислительных кластеров позволяет решить нестационарные уравнения Кона-Шэма для широкого класса атомов за относительно небольшое время, определяемое параметрами лазерного импульса и электронной конфигурацией атома. Демонстрация работы численного кода представлена на примере расчета спектра высокочастотного электронного тока, возбуждаемого при ионизации атомов инертных газов коротким лазерным импульсом.
This work was supported by the Russian Science Foundation through Grant No. 17-12-01574.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Нелинейные процессы
Quantum-mechanical simulations of interaction of many-electron quantum systems with ionizing laser pulses
Квантово-механічне моделювання взаємодії багатоелектронних квантових систем з іонізуючими лазерними імпульсами
Квантово-механическое моделирование взаимодействия многоэлектронных квантовых систем с ионизирующими лазерными импульсами
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Quantum-mechanical simulations of interaction of many-electron quantum systems with ionizing laser pulses
spellingShingle Quantum-mechanical simulations of interaction of many-electron quantum systems with ionizing laser pulses
Romanov, A.A.
Silaev, A.A.
Smirnova, D.A.
Sarantseva, T.S.
Minina, A.A.
Frolov, M.V.
Vvedenskii, N.V.
Нелинейные процессы
title_short Quantum-mechanical simulations of interaction of many-electron quantum systems with ionizing laser pulses
title_full Quantum-mechanical simulations of interaction of many-electron quantum systems with ionizing laser pulses
title_fullStr Quantum-mechanical simulations of interaction of many-electron quantum systems with ionizing laser pulses
title_full_unstemmed Quantum-mechanical simulations of interaction of many-electron quantum systems with ionizing laser pulses
title_sort quantum-mechanical simulations of interaction of many-electron quantum systems with ionizing laser pulses
author Romanov, A.A.
Silaev, A.A.
Smirnova, D.A.
Sarantseva, T.S.
Minina, A.A.
Frolov, M.V.
Vvedenskii, N.V.
author_facet Romanov, A.A.
Silaev, A.A.
Smirnova, D.A.
Sarantseva, T.S.
Minina, A.A.
Frolov, M.V.
Vvedenskii, N.V.
topic Нелинейные процессы
topic_facet Нелинейные процессы
publishDate 2018
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Квантово-механічне моделювання взаємодії багатоелектронних квантових систем з іонізуючими лазерними імпульсами
Квантово-механическое моделирование взаимодействия многоэлектронных квантовых систем с ионизирующими лазерными импульсами
description We develop parallel program for numerical simulation of the interaction of intense laser pulses with manyelectron atoms on the basis of the time-dependent Kohn-Sham equations. It is shown that the use of modern computer clusters makes it possible to solve these equations for a wide class of atoms in a relatively small time, determined by the parameters of the laser pulse and electronic configuration of the atom. High accuracy of the numerical code is demonstrated on the example of calculating the high-frequency spectrum of electron current excited during ionization of noble gas atoms by few-cycle laser pulse. Розробляється паралельний програмний код для чисельного моделювання взаємодії інтенсивних лазерних імпульсів з багатоелектронними атомами на основі нестаціонарного методу функціонала щільності. Показується, що використання сучасних багатопроцесорних обчислювальних кластерів дозволяє розв’язати нестаціонарні рівняння Кона-Шема для широкого класу атомів за відносно невеликий час, що визначається параметрами лазерного імпульсу і електронною конфігурацією атома. Демонстрація роботи чисельного коду представлена на прикладі розрахунку спектра високочастотного електронного струму, що збуджується при іонізації атомів інертних газів коротким лазерним імпульсом. Разрабатывается параллельный программный код для численного моделирования взаимодействия интенсивных лазерных импульсов с многоэлектронными атомами на основе нестационарного метода функционала плотности. Показывается, что использование современных многопроцессорных вычислительных кластеров позволяет решить нестационарные уравнения Кона-Шэма для широкого класса атомов за относительно небольшое время, определяемое параметрами лазерного импульса и электронной конфигурацией атома. Демонстрация работы численного кода представлена на примере расчета спектра высокочастотного электронного тока, возбуждаемого при ионизации атомов инертных газов коротким лазерным импульсом.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/147453
citation_txt Quantum-mechanical simulations of interaction of many-electron quantum systems with ionizing laser pulses / A.A. Romanov, A.A. Silaev, D.A. Smirnova, T.S. Sarantseva, A.A. Minina, M.V. Frolov, N.V. Vvedenskii // Вопросы атомной науки и техники. — 2018. — № 4. — С. 277-281. — Бібліогр.: 25 назв. — англ.
work_keys_str_mv AT romanovaa quantummechanicalsimulationsofinteractionofmanyelectronquantumsystemswithionizinglaserpulses
AT silaevaa quantummechanicalsimulationsofinteractionofmanyelectronquantumsystemswithionizinglaserpulses
AT smirnovada quantummechanicalsimulationsofinteractionofmanyelectronquantumsystemswithionizinglaserpulses
AT sarantsevats quantummechanicalsimulationsofinteractionofmanyelectronquantumsystemswithionizinglaserpulses
AT mininaaa quantummechanicalsimulationsofinteractionofmanyelectronquantumsystemswithionizinglaserpulses
AT frolovmv quantummechanicalsimulationsofinteractionofmanyelectronquantumsystemswithionizinglaserpulses
AT vvedenskiinv quantummechanicalsimulationsofinteractionofmanyelectronquantumsystemswithionizinglaserpulses
AT romanovaa kvantovomehaníčnemodelûvannâvzaêmodííbagatoelektronnihkvantovihsistemzíonízuûčimilazernimiímpulʹsami
AT silaevaa kvantovomehaníčnemodelûvannâvzaêmodííbagatoelektronnihkvantovihsistemzíonízuûčimilazernimiímpulʹsami
AT smirnovada kvantovomehaníčnemodelûvannâvzaêmodííbagatoelektronnihkvantovihsistemzíonízuûčimilazernimiímpulʹsami
AT sarantsevats kvantovomehaníčnemodelûvannâvzaêmodííbagatoelektronnihkvantovihsistemzíonízuûčimilazernimiímpulʹsami
AT mininaaa kvantovomehaníčnemodelûvannâvzaêmodííbagatoelektronnihkvantovihsistemzíonízuûčimilazernimiímpulʹsami
AT frolovmv kvantovomehaníčnemodelûvannâvzaêmodííbagatoelektronnihkvantovihsistemzíonízuûčimilazernimiímpulʹsami
AT vvedenskiinv kvantovomehaníčnemodelûvannâvzaêmodííbagatoelektronnihkvantovihsistemzíonízuûčimilazernimiímpulʹsami
AT romanovaa kvantovomehaničeskoemodelirovanievzaimodeistviâmnogoélektronnyhkvantovyhsistemsioniziruûŝimilazernymiimpulʹsami
AT silaevaa kvantovomehaničeskoemodelirovanievzaimodeistviâmnogoélektronnyhkvantovyhsistemsioniziruûŝimilazernymiimpulʹsami
AT smirnovada kvantovomehaničeskoemodelirovanievzaimodeistviâmnogoélektronnyhkvantovyhsistemsioniziruûŝimilazernymiimpulʹsami
AT sarantsevats kvantovomehaničeskoemodelirovanievzaimodeistviâmnogoélektronnyhkvantovyhsistemsioniziruûŝimilazernymiimpulʹsami
AT mininaaa kvantovomehaničeskoemodelirovanievzaimodeistviâmnogoélektronnyhkvantovyhsistemsioniziruûŝimilazernymiimpulʹsami
AT frolovmv kvantovomehaničeskoemodelirovanievzaimodeistviâmnogoélektronnyhkvantovyhsistemsioniziruûŝimilazernymiimpulʹsami
AT vvedenskiinv kvantovomehaničeskoemodelirovanievzaimodeistviâmnogoélektronnyhkvantovyhsistemsioniziruûŝimilazernymiimpulʹsami
first_indexed 2025-11-26T03:19:35Z
last_indexed 2025-11-26T03:19:35Z
_version_ 1850610015106236416
fulltext ISSN 1562-6016. ВАНТ. 2018. №4(116) 277 QUANTUM-MECHANICAL SIMULATIONS OF INTERACTION OF MANY-ELECTRON QUANTUM SYSTEMS WITH IONIZING LASER PULSES A.A. Romanov1,2, A.A. Silaev1,2, D.A. Smirnova1, T.S. Sarantseva1,3, A.A. Minina1,3, M.V. Frolov3, N.V. Vvedenskii1,2 1Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia; 2University of Nizhny Novgorod, Nizhny Novgorod, Russia; 3Department of Physics, Voronezh State University, Voronezh, Russia E-mail: romanov.alexander.al@gmail.com We develop parallel program for numerical simulation of the interaction of intense laser pulses with many- electron atoms on the basis of the time-dependent Kohn-Sham equations. It is shown that the use of modern com- puter clusters makes it possible to solve these equations for a wide class of atoms in a relatively small time, deter- mined by the parameters of the laser pulse and electronic configuration of the atom. High accuracy of the numerical code is demonstrated on the example of calculating the high-frequency spectrum of electron current excited during ionization of noble gas atoms by few-cycle laser pulse. PACS: 52.38.-r, 31.15.ee, 32.80.-t INTRODUCTION Interaction of intense laser field with atoms and molecules is accompanied by many different phenome- na interesting from the scientific and applied points of view. These phenomena include, in particular, above- threshold ionization [1], which consists in the possibility of absorption of more photons than are required for the ionization; high-order harmonic generation, which is the result of the acceleration of freed electrons and their collisions with the parent ions [2 - 8]. The excited elec- tron currents can also contain a low-frequency compo- nent responsible for the generation of radiation with a frequency much lower than the optical ones, in particu- lar, in the terahertz and mid-IR range [9 - 14]. Despite the fact that most of the atoms and mole- cules are essentially many-electron quantum systems, numerical studies of the above-mentioned ionization- induced phenomena are traditionally based on the sin- gle-active-electron approximation. Within the frame- work of this approximation all the electrons except one are frozen in their orbitals and the field of the parent ion is described by a static potential well. Such models can have high accuracy under certain conditions, but in many problems single-active-electron approximation is inapplicable, since it does not describe a number of es- sentially many-electron effects, such as the polarization of the atomic system. One of the methods for describing many-electron effects, which is close to the many- electron time-dependent Schrödinger equation, is the time-dependent density functional theory, which has recently been increasingly used in atomic physics and nonlinear optics [15 - 18]. This approach is based on the system of time-dependent Kohn-Sham (TDKS) equa- tions, in which the Hamiltonian for individual orbitals includes the interaction with the atomic nucleus, elec- tron-electron interaction, as well as interaction with the electric field of the laser pulse [17]. This paper is devoted to the development of parallel program for the numerical solution of TDKS equations for ab initio simulation of the evolution of many- electron atoms (such as neon, argon, krypton, and other noble gas atoms) during the interaction with an intense laser fields. The algorithm for solving the three- dimension TDKS equations is based on the spherical harmonics expansion of the potential energy and wave functions of orbitals. The increase in performance of the program related to the parallelization of its individual modules is analyzed and the high accuracy of the pro- gram is demonstrated. 1. STATEMENT OF THE PROBLEM Suppose that a many-electron atom interacts with a linearly polarized laser-pulse electric field of strength )(ˆ=)( tEt zE , where t is the time. We assume that the intensity and wavelength of the laser pulse correspond to the dipole approximation in which the action of the magnetic field in the calculation of the atom dynamics can be neglected [4]. We also limit ourselves here to the consideration of atoms in which orbitals initially are occupied by electrons of the opposite spin. Due to the weak influence of the magnetic field, the zero spin po- larization is conserved during interaction with the laser pulse, therefore TDKS equations describing the dynam- ics of a many-electron system are written down as fol- lows (here and below, the atomic system of units is used in which 1=== eme  , where  is the reduced Planck constant, ||= ee − is the charge and me is the mass of the electron): .)],([)( 2 1=ˆ /2,1,...,=),,(ˆ=),( 2 tVtzE r ZH NntHt t i ee nn r rr r ψψ ++−∇− ∂ ∂ (1) Here, nψ is the wave function of the n-th TDKS or- bital, Z is the nuclear charge, N is the (even) number of electrons, r is the electron density, )],([ tVee rr is the potential of electron-electron interaction. The electron density is related to TDKS orbitals by equality .),(2=),( 2/2 1= tt n N n rr ψr ∑ (2) The electron-electron interaction potential consists of the Hartree potential ,)(=)],([ 3 rr rr ′− ′ ′∫ r r rdtVH (3) ISSN 1562-6016. ВАНТ. 2018. №4(116) 278 describing the electron repulsion in the framework of the mean field, and the exchange-correlation potential xcV for which the spin unpolarized form of LB94 ap- proximation [19] is used [ ].)(2sinh)(231 )()(2 )],([=)],([ 1/311/3 1/321/3 94 rr rr rr χβχ rβχ rr −⋅+ − tVtV LDA xc LB xc (4) Here, )],([ tV LDA xc rr is the exchange-correlation po- tential in the local density approximation [17], )(/)(=)( 4/3 rrr rrχ ∇ , and 05.0=β . The initial condi- tion corresponds to the ground state of the atom, which is described by the stationary Kohn-Sham orbitals )(,0 rnψ : )],([ 2 1=ˆ ,=)(ˆ 0 2 0 ,0,00 r r r ψψ ee nnn V r ZH EH +−∇− (5) where nE is the energy of the n-th orbital. Using TDKS orbitals and Ehrenfest's theorem one can find the time-dependent dipole acceleration of the atomic system [18]: ).,()(=)( 3 3 t r ZrdtNt rrEa r∫−− (6) Then, the macroscopic electron current density in the produced plasmas can be found as tdtNt t g ′′− ∫ ∞− )(=)( aj , where gN is the gas density be- fore the start of the ionization process [20]. In addition, using the wave functions of TDKS orbitals after the passage of the laser pulse, one can find the final photoe- lectron momentum distribution [15] ,)(~2=)( 2/2 1= pp n N n P ψ∑ (7) where p is the momentum vector and )(~ pnψ is the spa- tial Fourier transform of the n-th TDKS orbital except the projections on atomic bound states. 2. THE NUMERICAL IMPLEMENTATION 2.1. THE NUMERICAL METHOD For the numerical solution of TDKS equations, or- bitals ),( tn rψ are decomposed into spherical harmonics ,)cos( )!(4 )!1)((2=),( ϕθ π ϕθ imm llm eP ml mllY + −+ (8) where θ is the polar angle with respect to z-axis di- rected along the external field, ϕ is the azimuthal angle, m lP are the associated Legendre polynomials. The ini- tial Kohn-Sham orbitals correspond to the electronic configuration of the unperturbed atom and are given by ),,()(=),,( ,0 1 ,0 ϕθϕθψ nnlnn mYrrr Y− (9) where nl and nm are orbital and magnetic quantum numbers of the n-th orbital. Since the external electric field has linear polarization, the magnetic quantum number of each orbitals is conserved in time, therefore in the decomposition of TDKS orbitals only the term with m = mn exists: ).,(),(=),,,( 0= 1 ϕθϕθψ nlmnl l n Ytrrtr Y∑ ∞ − (10) To find the time dynamics of the radial component of the n-th TDKS orbital, the following method is used (the modification of which is also used to calculate sta- tionary orbitals). The potential of the electron-electron interaction eeV is decomposed into spherical harmonics up to the quadrupole term: ( ).1cos3 2 1),( cos),(),(),,( 2(2) (1)(0) −+ +≈ θ θθ trV trVtrVtrV ee eeeeee (11) Substituting (10), (11) into (1), multiplying by the spherical harmonic nlmY , and integrating over the solid angle, we obtain a system of equations on nlY , which is conveniently represented in the matrix form ( ) ).,(ˆˆ=),( trtr t i nnnn ΨWRΨ + ∂ ∂ (12) Here nΨ is the coulomn vector whose l-th element is nlY , nR̂ is the diagonal matrix with elements [ ] ).,( 3)1)(2(2 31)( ),( 2 1)( 2 1=ˆ (2) 2 (0) 22 2 trV ll mll trV r Z r ll r ee n ee lln +− −+ ++ − + + ∂ ∂ −R (13) The elements of the pentadiagonal matrix nŴ , which represents the dipole interaction electrons with the electric field and dipole and partly quadrupole terms of electron-electron interaction, are given by [ ] ( ) ( )          + + − − + +− − ,otherwise 2= 1= 1= 2= 0 ),,( ,),()( ,),()( ),,( =ˆ (2) , (1) , (1) ,1 (2) ,2 lk lk lk lk trVd trVtrEc trVtrEc trVd eeml eeml eeml eeml kln n n n n W (14) where . 5)3)(2(2 2)( 2 3= , 3)1)(2(2 1)(= 22 ,, 22 , ++ −+ ++ −+ ll mlcd ll mlc mlml ml (15) The evolution of TDKS orbitals to the time step t∆ is performed using the following propagator: .)](ˆ)(ˆ[exp=),(ˆ ),,(),(ˆ=),(      ′+′′−∆+ ∆+∆+ ∫ ∆+ tttdittt trtttttr nn tt tn nnn WRU ΨUΨ (16) The propagator ),(ˆ tttn ∆+U is approximated up to the second order in t∆ as follows: ( ) ( ) ( ).2/)(ˆexp)(ˆexp 2/)(ˆexp),(ˆ ttitti ttittt nn nn WR WU ∆−∆−× ∆−≈∆+ (17) The application of the exponential operator ( )/2ˆexp nti W∆− is performed using diagonalization of the matrix nŴ by the unitary transformation † diag, ˆˆˆ=ˆ nnnn SWSW , where the sign " † " corresponds to the Hermitian conjugation, resulting in ( ) ( ) .ˆ2/)(ˆexpˆ=2/)(ˆexp † diag, nnnn ttitti SWSW ∆−∆− (18) ISSN 1562-6016. ВАНТ. 2018. №4(116) 279 The operator ( )nti R̂exp ∆− can be applied using the Crank-Nicholson approximation /2).ˆ(1/2)ˆ(1)ˆ(exp 1 nnn tititi RRR ∆−∆+≈∆− − (19) The second derivative in nR̂ is computed using the Numerov approximation with the equidistant step along r . To calculate the radial part )(,0 rnY of the stationary Kohn-Sham orbitals (the initial condition for the time problem), we use a similar algorithm in which the time has purely imaginary values [21]. 2.2. PARALLELIZATION OF NUMERICAL CODE The method used to solve TDKS equations is well suited for execution on computer clusters, since it has two levels of parallelism. The first level is related to the properties of the matrices nR̂ and nŴ . The matrix nR̂ is diagonal and the application of the operator (19) is calculated independently for each l-th component of the vector nΨ (l parallelism). The operator (18) is applied independently for each point of the radial grid (r paral- lelism). The first level of parallelism is convenient for implementing on systems with shared memory using OpenMP technology. The second level of parallelism is ensured by the fact that some operations for different orbitals are performed independently (n parallelism). This level of parallelism can be implemented for sys- tems with a distributed memory using MPI technology. For cluster systems having many nodes consisting of several sockets the parallel propagation algorithm for one time step can be implemented as follows: • For each orbital )(tnΨ the action operator ),(ˆ tttn ∆+U is performed in parallel inside differ- ent sockets of different nodes of the cluster. • The calculated values )( ttn ∆+Ψ are sent to the one (main) node. • On the main node the electron-electron potential )]([ ttVee ∆+r is calculated on the basis of )( ttn ∆+Ψ and is sent to all the involved cluster nodes. The Table compares the propagation time for one time step without using parallelization (on a single core) and using different variants of parallelization of pro- gram modules on a computer cluster. The latter consists of a large number (more than 30) nodes connected by a high-speed computer-network InfiniBand with the bandwidth 14 Gbit/s between nodes. Each node repre- sents a two-socket system with two 10-core Intel Xeon E5-2680 v2 processors. Calculations are performed for three different noble gas atoms: neon, argon, and kryp- ton. To describe the dynamics of the atom (using the symmetry in the spin and in the magnetic quantum number) only 4, 7, and 13 independent TDKS orbitals are used for Ne, Ar, and Kr, respectively. The radial numerical grid has Nr=104 nodes and the maximum value of the orbital angular momentum is lmax =512. As one can see from the Table, the usage of l and r parallelisms inside one socket leads to a multiple de- crease of propagation time. The increase of the perfor- mance approximately equals to the number of cores in the socket (which is 10 on the used system). Atom One-step calculation time (s) single core (no parallelism) single socket (r,l parallelism) cluster (n,r,l parallelism) Ne 26.6 3.31 1.22 Ar 46.48 5.86 1.32 Kr 113.74 16.12 1.5 The one-time-step propagation time for three atoms: Ne, Ar, and Kr. The first column shows the result for the single-CPU (parallelization-free) calculation. The sec- ond column is propagation time for 10 cores of single processor with the parallelization of operators (18) and (19). The third column shows the propagation time with the additional parallelization in orbitals. It is computed on 2 cluster nodes for Ne, 4 nodes for Ar, and 7 nodes for Kr (each node has 20 cores in total) At the same time, the efficiency of n parallelism strongly depends on the speed of data transfer between cluster nodes, on the number of sockets on each node, and on the number of independent orbitals in an atom. For the used computer cluster with 2 sockets on each node the increase of the performance is 2.7 for Ne atom, 4.4 for Ar, and 10.7 for Kr. The one-step propagation time for different atomic systems is approximately the same (1.2…1.5 s), which is associated with almost complete parallelization in orbitals. It should be noted, however, that in the considered example the number of numerical grid nodes Nr is fixed. At the same time, when solving some physical problem with the use of TDKS equations, it is necessary to re- duce the coordinate step near the nucleus as the nuclear charge increases in order to ensure high accuracy of calculations. Moreover, it is necessary also to decrease the time step t∆ to resolve the natural frequencies of the lowest orbitals [22]. This leads to a rather significant decrease in the speed of numerical simulation with the increase of the atom nuclear charge, which will be demonstrated in the examples of calculation below. 2.3. EXAMPLES OF CALCULATION In order to test the developed computational code, we consider neon, argon, and krypton atoms interacting with a few-cycle laser pulse with the electric field hav- ing the sine-squared envelope located at pt t≤≤0 : ( )    − ∂−∂ ).(sin/sin)/(=)( ,/=)( 0 2 00 ttEtA tAtE p ωtπω (20) Here, E0 is the peak amplitude of the electric field, corresponding to the peak intensity 14103 ⋅ W/cm2, 0.0570 ≈ω au is the carrier frequency, corresponding to the wavelength 800 nm, and 7.14≈pt fs corresponds to two cycles at the full-width at half maximum of intensi- ty. Calculations are performed in the spatial region max0 rr ≤≤ , where rmax =200 au with the maximum val- ue of the orbital angular momentum lmax =512. The step along the radial coordinate is 0.04=r∆ au for Ne, 0.02=r∆ au for Ar, and 0.01=r∆ au for Kr, the time step is 2102.4= −⋅∆t au for Ne, 3108= −⋅∆t au for Ar, and 3102= −⋅∆t au for Kr. To absorb waves approaching the boundary along r, a three-hump imaginary potential [23] with a total width of the absorbing layer labs = 50 is ISSN 1562-6016. ВАНТ. 2018. №4(116) 280 used. To perform the calculations we use 4 sockets/2 nodes for Ne, 7 sockets/4 nodes for Ar, and 13 sockets/7 nodes for Kr. The large difference in rrN ∆/= maxr and in the time step t∆ for different atoms leads to a differ- ence in calculation time which is 5 hours for Ne, 32 hours for Ar, and 12 days 6 hours for Kr. The spectra of dipole acceleration excited during inter- action of Ne (a), Ar (b), and Kr (c) atoms with short laser pulse with the wavelength of 800 nm and peak intensity of 14103 ⋅ W/cm2. The dashed line indicates classical cutoff of frequency ppс UI 3.17+=ω , where pI is the ionization potential of atom and pU is the maximum electron ponderomotive energy The squared modulus of the Fourier spectrum of the dipole acceleration is shown in Figure. As can be seen from the Figure, the spectrum for Ne, Ar, and Kr con- tains a high-frequency part lying in the vacuum ultravio- let range, which is associated with rescattering of the photoelectrons on the parent ion [2 - 8]. The shape of the spectrum depends strongly on the type of atom. With increasing ionization potential pI ( =pI 13.99 eV for Kr, 15.76 eV for Ar, and 21.55 eV for Ne), the max- imum energy of the generated harmonics increases ac- cording to the well-known formula for the plateau cutoff position ppс UI 3.17+=ω , where pU is the maximum electron ponderomotive energy [2, 3]. At the same time the spectral intensity decreases with increasing of ioni- zation potential, since ionization probability of the atom decreases. The high-frequency spectrum for the case of Ar contains a minimum located approximately at 51 eV. This minimum is called Cooper minimum and is oc- curred due to the interference of two electron recombi- nation channels in the ground state: ps → and pd → [6, 24]. The minimum position obtained in the presented calculation is in good agreement with the results of ex- periments on the high harmonics generation in Ar [24], as well as with known results of numerical calculations using the time-dependent density functional theory [18], which confirms the high accuracy of the developed code. The Cooper minimum for Kr is not observed in Figure since it is located at 80 eV [25] that is higher than the cutoff frequency ωc for the considered parame- ters of the laser pulse. CONCLUSIONS The parallel program code has been developed for the numerical solution of the time-dependent Kohn- Sham equations for ab initio modeling of the evolution of many-electron atoms during the interaction with an intense laser field. The solution algorithm is based on the decomposition of the wave functions of the Kohn- Sham orbitals and the potential energy into spherical harmonics. The high accuracy of the program is demon- strated by the example of calculating the spectrum of a high-frequency electron current excited during ioniza- tion of noble gas atoms by a few-cycle laser pulse. It is shown that the use of parallelization between the nodes of modern computer clusters and between the CPUs of individual socket makes it possible to perform calcula- tions for typical parameters of laser pulses in a relative- ly small time from several hours to several days depend- ing on the atomic system under consideration. ACKNOWLEDGEMENT This work was supported by the Russian Science Foundation through Grant No. 17-12-01574. REFERENCES 1. W. Becker, F. Grasbon, R. Kopold, D. Milošević, G. Paulus, H. Walther. Above-threshold ionization: From classical features to quantum effects // Ad- vances in Atomic, Molecular, and Optical Physics. 2002, v. 48, p. 35-98. 2. P.B. Corkum. Plasma perspective on strong field multiphoton ionization // Physical Review Letters. 1993, v. 71, p. 1994. 3. M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’huillier, P.B. Corkum. Theory of high- harmonic generation by low-frequency laser fields // Physical Review A.1994, v. 49, p. 2117. 4. A.V. Kim, M.Y. Ryabikin, A.M. Sergeev. From femtosecond to attosecond pulses // Physics- Uspekhi. 1999, v. 42, p. 54-61. 5. F. Krausz, M. Ivanov. Attosecond physics // Reviews of Modern Physics. 2009, v. 81, p. 163. 6. M.V. Frolov, N.L. Manakov, T.S. Sarantseva, M.Yu. Emelin, M.Yu. Ryabikin, A.F. Starace. Ana- lytic description of the high-energy plateau in har- monic generation by atoms: can the harmonic power increase with increasing laser wavelengths? // Physi- cal Review Letters. 2009, v. 102, p. 243901. 7. D. Shafir, B. Fabre, J. Higuet, H. Soifer, M. Dagan, D. Descamps, E. Mével, S. Petit, H.J. Wörner, B. Pons, et al. Role of the ionic potential in high harmonic generation // Physical Review Letters. 2012, v. 108, p. 203001. 8. H.-C. Wu, J. Meyer-ter Vehn. Giant half-cycle atto- second pulses // Nature Photonics. 2012, v. 6, p. 304. a b c ISSN 1562-6016. ВАНТ. 2018. №4(116) 281 9. K.-Y. Kim, A.J. Taylor, J.H. Glownia, G. Rodriguez. Coherent control of terahertz super- continuum generation in ultrafast laser-gas interac- tions // Nature photonics. 2008, v. 2, p. 605-609. 10. A.A. Silaev, N.V. Vvedenskii. Residual-current exci- tation in plasmas produced by few-cycle laser pulses // Physical Review Letters. 2009, v. 102, p. 115005. 11. N.V. Vvedenskii, A.I. Korytin, V.A. Kostin, A.A. Murzanev, A.A. Silaev, A.N. Stepanov. Two- color laser-plasma generation of terahertz radiation using a frequency-tunable half harmonic of a femto- second pulse // Physical Review Letters. 2014, v. 112, p. 055004. 12. T. Balciunas, D. Lorenc, M. Ivanov, O. Smirnova, A. Zheltikov, D. Dietze, K. Unterrainer, T. Rathje, G. Paulus, A. Baltuška, et al. CEP-stable tunable THz-emission originating from laser-waveform- controlled sub-cycle plasma-electron bursts // Optics Express. 2015, v. 23, p. 15278-15289. 13. V.A. Kostin, I.D. Laryushin, A.A. Silaev, N.V. Vvedenskii. Ionization-induced multiwave mixing: Terahertz generation with two-color laser pulses of various frequency ratios // Physical Review Letters. 2016, v. 117, p. 035003. 14. A.A. Silaev, V.A. Kostin, I.D. Laryushin, N.V. Vvedenskii. Ionization mechanism of the gen- eration of tunable ultrashort pulses in the mid-infrared range // JETP Letters. 2018, v. 107, p. 151-156. 15. U. De Giovannini, D. Varsano, M.A. Marques, H. Appel, E.K. Gross, A. Rubio. Ab initio angle- and energy-resolved photoelectron spectroscopy with time-dependent density-functional theory // Physical Review A. 2012, v. 85, p. 062515. 16. S.-I. Chu. Recent development of self-interaction-free time-dependent density-functional theory for nonper- turbative treatment of atomic and molecular multipho- ton processes in intense laser fields // The Journal of Chemical Physics. 2005, v. 123, p. 062207. 17. C.A. Ullrich. Time-dependent density-functional theory: concepts and applications // Oxford graduate texts, Oxford University Press. 2011. 18. D.A. Telnov, K.E. Sosnova, E. Rozenbaum, S.-I. Chu. Exterior complex scaling method in time- dependent density-functional theory: Multiphoton ionization and high-order-harmonic generation of Ar atoms // Physical Review A. 2013, v. 87, p. 053406. 19. R. Van Leeuwen, E. Baerends. Exchange-correlation potential with correct asymptotic behavior // Physi- cal Review A. 1994, v. 49, p. 2421. 20. A.A. Silaev, M.Y. Ryabikin, N.V. Vvedenskii. Strong-field phenomena caused by ultrashort laser pulses: Effective one- and two-dimensional quan- tum-mechanical descriptions // Physical Review A. 2010, v. 82, p. 033416. 21. D. Bauer, P. Koval. Qprop: A Schrödinger-solver for intense laser-atom interaction // Computer Physics Communications. 2006, v. 174, p. 396-421. 22. A. Castro, M.A. Marques, A. Rubio. Propagators for the time-dependent Kohn-Sham equations // The Jour- nal of Chemical Physics. 2004, v. 121, p. 3425-3433. 23. A.A. Silaev, A.A. Romanov, N.V. Vvedenskii. Mul- ti-hump potentials for efficient wave absorption in the numerical solution of the time-dependent Schrö- dinger equation // Journal of Physics B: Atomic, Mo- lecular and Optical Physics. 2018, v. 51, p. 065005. 24. H.J. Wörner, H. Niikura, J.B. Bertrand, P.B. Corkum, D.M. Villeneuve. Observation of elec- tronic structure minima in high-harmonic generation // Physical Review Letters. 2009, v. 102, p. 103901. 25. A.D. Shiner, et al. Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy // Nature Physics. 2011, v. 7, p. 464. Article received 01.07.2018 КВАНТОВО-МЕХАНИЧЕСКОЕ МОДЕЛИРОВАНИЕ ВЗАИМОДЕЙСТВИЯ МНОГОЭЛЕКТРОННЫХ КВАНТОВЫХ СИСТЕМ С ИОНИЗИРУЮЩИМИ ЛАЗЕРНЫМИ ИМПУЛЬСАМИ А.А. Романов, А.А. Силаев, Д.А. Смирнова, Т.С. Саранцева, А.А. Минина, М.В. Фролов, Н.В. Введенский Разрабатывается параллельный программный код для численного моделирования взаимодействия интен- сивных лазерных импульсов с многоэлектронными атомами на основе нестационарного метода функциона- ла плотности. Показывается, что использование современных многопроцессорных вычислительных класте- ров позволяет решить нестационарные уравнения Кона-Шэма для широкого класса атомов за относительно небольшое время, определяемое параметрами лазерного импульса и электронной конфигурацией атома. Де- монстрация работы численного кода представлена на примере расчета спектра высокочастотного электрон- ного тока, возбуждаемого при ионизации атомов инертных газов коротким лазерным импульсом. КВАНТОВО-МЕХАНІЧНЕ МОДЕЛЮВАННЯ ВЗАЄМОДІЇ БАГАТОЕЛЕКТРОННИХ КВАНТОВИХ СИСТЕМ З ІОНІЗУЮЧИМИ ЛАЗЕРНИМИ ІМПУЛЬСАМИ А.А. Романов, А.А. Силаєв, Д.А. Смирнова, Т.С. Саранцева, А.А. Мініна, М.В. Фролов, Н.В. Введенський Розробляється паралельний програмний код для чисельного моделювання взаємодії інтенсивних лазер- них імпульсів з багатоелектронними атомами на основі нестаціонарного методу функціонала щільності. По- казується, що використання сучасних багатопроцесорних обчислювальних кластерів дозволяє розв’язати нестаціонарні рівняння Кона-Шема для широкого класу атомів за відносно невеликий час, що визначається параметрами лазерного імпульсу і електронною конфігурацією атома. Демонстрація роботи чисельного коду представлена на прикладі розрахунку спектра високочастотного електронного струму, що збуджується при іонізації атомів інертних газів коротким лазерним імпульсом. INTRODUCTION 1. STATEMENT OF the problem 2. The numerical implementation 2.1. The numerical method 2.2. Parallelization of numerical code 2.3. Examples of calculation Conclusions Acknowledgement References Квантово-механическое моделирование взаимодействия многоэлектронных квантовых систем с ионизирующими лазерными импульсами