Сorrosion and radiation resistance of potassium magnesium phosphate matrices

Corrosion and radiation resistances of potassium magnesium phosphate (PМP) matrices for hardening of liquid radioactive wastes of NPP were investigated. The high corrosion resistance of the PMP matrices to leaching of both basic components of matrix and cesium was shown. Results of performed wor...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Sayenko, S.Y., Shkuropatenko, V.A., Zykova, A.V., Surkov, O.Y., Pylypenko, O.V., Ulybkina, К.А., Lobach, K.V.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Series:Вопросы атомной науки и техники
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/147704
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Сorrosion and radiation resistance of potassium magnesium phosphate matrices / S.Y. Sayenko, V.A. Shkuropatenko, A.V. Zykova, O.Y. Surkov, O.V. Pylypenko, К.А. Ulybkina, K.V. Lobach // Вопросы атомной науки и техники. — 2018. — № 5. — С. 75-81. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147704
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1477042025-02-09T21:59:15Z Сorrosion and radiation resistance of potassium magnesium phosphate matrices Корозійна та радіаційна стійкість калій-магній-фосфатних матриць Коррозионная и радиационная стойкость калий-магний-фосфатных матриц Sayenko, S.Y. Shkuropatenko, V.A. Zykova, A.V. Surkov, O.Y. Pylypenko, O.V. Ulybkina, К.А. Lobach, K.V. Физика радиационных повреждений и явлений в твердых телах Corrosion and radiation resistances of potassium magnesium phosphate (PМP) matrices for hardening of liquid radioactive wastes of NPP were investigated. The high corrosion resistance of the PMP matrices to leaching of both basic components of matrix and cesium was shown. Results of performed work showed stability of physics and mechanical properties, as well as phase composition and microstructure of PMP after simulated γ-irradiation up to the absorbed dose 10⁸ rad. It was determined that irradiation by high-energy electrons to the absorbed dose 10¹⁰ rad results in partial dehydration and amorphization of PMP. Досліджена корозійна та радіаційна стійкість калій-магній-фосфатних (КМФ) матриць для затвердіння рідких радіоактивних відходів АЕС. Показана висока корозійна стійкість КМФ-матриць до вилуговування як основних компонентів матриці, так і цезію. Результати виконаної роботи показали стійкість фізичних та механічних властивостей, а також фазового складу і мікроструктури КМФ після імітації γ-опроміненням до поглиненої дози 10⁸ рад. Було встановлено, що опромінення високоенергетичними електронами до поглиненої дози 10¹⁰ рад призводить до часткової дегідратації та аморфізації КМФ. Исследована коррозионная и радиационная стойкость калий-магний-фосфатных (КМФ) матриц для отверждения жидких радиоактивных отходов АЭС. Показана высокая коррозионная стойкость КМФ-матриц к выщелачиванию как основных компонентов матрицы, так и цезия. Результаты выполненной работы показали устойчивость физических и механических свойств, а также фазового состава и микроструктуры КМФ после имитации γ-облучением до поглощенной дозы 10⁸ рад. Было установлено, что облучение высокоэнергетическими электронами до поглощенной дозы 10¹⁰ рад приводит к частичной дегидратации и аморфизации КМФ. 2018 Article Сorrosion and radiation resistance of potassium magnesium phosphate matrices / S.Y. Sayenko, V.A. Shkuropatenko, A.V. Zykova, O.Y. Surkov, O.V. Pylypenko, К.А. Ulybkina, K.V. Lobach // Вопросы атомной науки и техники. — 2018. — № 5. — С. 75-81. — Бібліогр.: 17 назв. — англ. 1562-6016 PACS: 28.41.Kw https://nasplib.isofts.kiev.ua/handle/123456789/147704 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Физика радиационных повреждений и явлений в твердых телах
Физика радиационных повреждений и явлений в твердых телах
spellingShingle Физика радиационных повреждений и явлений в твердых телах
Физика радиационных повреждений и явлений в твердых телах
Sayenko, S.Y.
Shkuropatenko, V.A.
Zykova, A.V.
Surkov, O.Y.
Pylypenko, O.V.
Ulybkina, К.А.
Lobach, K.V.
Сorrosion and radiation resistance of potassium magnesium phosphate matrices
Вопросы атомной науки и техники
description Corrosion and radiation resistances of potassium magnesium phosphate (PМP) matrices for hardening of liquid radioactive wastes of NPP were investigated. The high corrosion resistance of the PMP matrices to leaching of both basic components of matrix and cesium was shown. Results of performed work showed stability of physics and mechanical properties, as well as phase composition and microstructure of PMP after simulated γ-irradiation up to the absorbed dose 10⁸ rad. It was determined that irradiation by high-energy electrons to the absorbed dose 10¹⁰ rad results in partial dehydration and amorphization of PMP.
format Article
author Sayenko, S.Y.
Shkuropatenko, V.A.
Zykova, A.V.
Surkov, O.Y.
Pylypenko, O.V.
Ulybkina, К.А.
Lobach, K.V.
author_facet Sayenko, S.Y.
Shkuropatenko, V.A.
Zykova, A.V.
Surkov, O.Y.
Pylypenko, O.V.
Ulybkina, К.А.
Lobach, K.V.
author_sort Sayenko, S.Y.
title Сorrosion and radiation resistance of potassium magnesium phosphate matrices
title_short Сorrosion and radiation resistance of potassium magnesium phosphate matrices
title_full Сorrosion and radiation resistance of potassium magnesium phosphate matrices
title_fullStr Сorrosion and radiation resistance of potassium magnesium phosphate matrices
title_full_unstemmed Сorrosion and radiation resistance of potassium magnesium phosphate matrices
title_sort сorrosion and radiation resistance of potassium magnesium phosphate matrices
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2018
topic_facet Физика радиационных повреждений и явлений в твердых телах
url https://nasplib.isofts.kiev.ua/handle/123456789/147704
citation_txt Сorrosion and radiation resistance of potassium magnesium phosphate matrices / S.Y. Sayenko, V.A. Shkuropatenko, A.V. Zykova, O.Y. Surkov, O.V. Pylypenko, К.А. Ulybkina, K.V. Lobach // Вопросы атомной науки и техники. — 2018. — № 5. — С. 75-81. — Бібліогр.: 17 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT sayenkosy sorrosionandradiationresistanceofpotassiummagnesiumphosphatematrices
AT shkuropatenkova sorrosionandradiationresistanceofpotassiummagnesiumphosphatematrices
AT zykovaav sorrosionandradiationresistanceofpotassiummagnesiumphosphatematrices
AT surkovoy sorrosionandradiationresistanceofpotassiummagnesiumphosphatematrices
AT pylypenkoov sorrosionandradiationresistanceofpotassiummagnesiumphosphatematrices
AT ulybkinaka sorrosionandradiationresistanceofpotassiummagnesiumphosphatematrices
AT lobachkv sorrosionandradiationresistanceofpotassiummagnesiumphosphatematrices
AT sayenkosy korozíinataradíacíinastíikístʹkalíimagníifosfatnihmatricʹ
AT shkuropatenkova korozíinataradíacíinastíikístʹkalíimagníifosfatnihmatricʹ
AT zykovaav korozíinataradíacíinastíikístʹkalíimagníifosfatnihmatricʹ
AT surkovoy korozíinataradíacíinastíikístʹkalíimagníifosfatnihmatricʹ
AT pylypenkoov korozíinataradíacíinastíikístʹkalíimagníifosfatnihmatricʹ
AT ulybkinaka korozíinataradíacíinastíikístʹkalíimagníifosfatnihmatricʹ
AT lobachkv korozíinataradíacíinastíikístʹkalíimagníifosfatnihmatricʹ
AT sayenkosy korrozionnaâiradiacionnaâstoikostʹkaliimagniifosfatnyhmatric
AT shkuropatenkova korrozionnaâiradiacionnaâstoikostʹkaliimagniifosfatnyhmatric
AT zykovaav korrozionnaâiradiacionnaâstoikostʹkaliimagniifosfatnyhmatric
AT surkovoy korrozionnaâiradiacionnaâstoikostʹkaliimagniifosfatnyhmatric
AT pylypenkoov korrozionnaâiradiacionnaâstoikostʹkaliimagniifosfatnyhmatric
AT ulybkinaka korrozionnaâiradiacionnaâstoikostʹkaliimagniifosfatnyhmatric
AT lobachkv korrozionnaâiradiacionnaâstoikostʹkaliimagniifosfatnyhmatric
first_indexed 2025-12-01T05:17:13Z
last_indexed 2025-12-01T05:17:13Z
_version_ 1850281804316016640
fulltext ISSN 1562-6016. ВАНТ. 2018. №5(117) 75 CORROSION AND RADIATION RESISTANCE OF POTASSIUM MAGNESIUM PHOSPHATE MATRICES S.Y. Sayenko, V.A. Shkuropatenko, A.V. Zykova, O.Y. Surkov, O.V. Pylypenko, К.А. Ulybkina, K.V. Lobach Institute of Solid State Physics, Material Science and Technology National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: shkuropatenko@kipt.kharkov.ua Corrosion and radiation resistances of potassium magnesium phosphate (PМP) matrices for hardening of liquid radioactive wastes of NPP were investigated. The high corrosion resistance of the PMP matrices to leaching of both basic components of matrix and cesium was shown. Results of performed work showed stability of physics and mechanical properties, as well as phase composition and microstructure of PMP after simulated -irradiation up to the absorbed dose 10 8 rad. It was determined that irradiation by high-energy electrons to the absorbed dose 10 10 rad results in partial dehydration and amorphization of PMP. PACS: 28.41.Kw INTRODUCTION At present, the problem of the radioactive waste safe handling is very challenging for further scale and dynamics of the nuclear power industry development [1]. It is known that in the process of exploitation of nuclear power plant, plenty of liquid radioactive wastes (LRW) of low and middle activity appears, gathers and kept. These radioactive wastes should not be used for the direct disposal, according to existent Ukrainian rules. One of the main methods of LRW solidification is the waste hardening by the addition of various binding components [2, 3]. The cementation is the simplest and most accessible method of LBW hardening. The main disadvantages of this method are low strength of the cement matrices, low filling of salts, low solidification speed, incomplete solidification of the liquid phase at a high water-cement ratio [4]. In addition, the salts included in LRW affect the basic processes of cement hydration, which leads to the degradation of the cement matrix over time [5]. As an alternative to the cement matrices, a potassium magnesium phosphate (PMP) matrices has been proposed for the immobilization of LRW [6]. The PMP matrix consists of a monophasic crystalline hexahydrate of magnesium and potassium double orthophosphate (KMgPO4∙6H2O). The PMP is an analog of natural phosphate minerals  monazite and apatite, which demonstrate high physic-chemical stability in the geological environment. PMP is classified as ceramic cement and has properties characteristic of both ceramics and hydraulic cements due to the uniqueness of its properties. The microstructure of PMP is similar to ceramics, with a strongly pronounced crystalline structure. However, in contrast to traditional ceramics, PMP is formed at room temperature and uses water at the beginning of chemical reactions, with subsequent solidification of the material, similar to the production of hydraulic concretes. Examples of the PMP matrices application for solidification of Tc-containing wastes simulators, incorporation of Pu, immobilization of cesium and simulators of liquid high-salt HLW are well known [710]. One of the main requirements for LRW solidification matrices selection is the radiation and corrosion resistance. The corrosion resistance of the matrices with respect to leaching in the water is the main criterion for their applicability for the environmentally safe storage of radioactive waste. The matrix with radioactive waste included will be subject to the action of β-particles and γ-radiation due to the decay contained in radionuclide waste. There can be changes in volume, microstructure, mechanical properties and resistance to leaching of solidified waste forms under the irradiation process. The aim of the study was research of the radiation and corrosion resistance of PMP as promising materials for the solidification of LRW at nuclear power plants. MATERIALS AND METHODS For the synthesis of PMP KMgPO4∙6H2O, the following reactors were used: – magnesium oxide MgO (grade h); – potassium dihydrogen phosphate KH2PO4 (grade h); – distilled water (pH = 5.5). In the case of synthesizing cesium-containing PMP samples, cesium chloride CsCl was used as a starting reagent (grade hp). Irradiation by electrons and bremsstrahlung γ-radiation of PMP samples was carried out at the KUT-1 accelerator of the NSC KIPT (electron energy E = 10 MeV). PMP samples were irradiated by electrons to a set of absorbed dose of 10 10 rad (10 8 Gy) and bremsstrahlung γ-radiation – 10 8 rad (10 6 Gy). The phase composition of the PMP materials was investigated by X-ray diffraction analysis (DRON-4-07 in copper Cu-Kα-radiation using a Ni selectively absorbing filter). To identify the phases, the JCPDS diffraction data base was used. The density of the PMP samples was determined by hydrostatic weighing. https://www.kipt.kharkov.ua/kipt_sites/isspmst/main_site/ENGindex.html 76 ISSN 1562-6016. ВАНТ. 2018. №5(117) Compression tests of PMP samples were carried out on an electromechanical press of the brand “ZD 10/90”, the maximum load – 10 tons. To analyse the corrosion resistance of PMP matrices, leaching tests were carried out at a temperature of 90 °C for 7 days in accordance to the PCT test [11]. The test was made according to the procedure ASTM C1285 “Standard Test Methods for Deter-Mineral Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses: The Product Consistency Test (PCT)”. Corrosion resistance of PMP matrices with respect to cesium leaching as the main radionuclide of LRW from NPP was determined in accordance to the ANS 16.1 test [12] in the long-term leaching of PMP samples containing 10 wt.%CsCl and 15 wt.%CsCl in bidistilled water at 25 °C. The concentration of K, Mg, P, Cs in the leachate was determined by atomic-emission spectroscopy with inductively coupled plasma ICP-AES (Spectrometer Scan Advantage, manufactured by Thermo Jarrell Ash, USA). EXPERIMENTAL PART PMP were obtained at room temperature as a result of an acid-alkaline reaction between magnesium oxide MgO and potassium dihydrogen phosphate KH2PO4 in water [9]. The dry mixture of MgO and KH2PO4 was thoroughly mixed, and then the required amount of water was added to this mixture. Further, the resulting mass was stirred for 20…30 min until a pasty state. The paste was placed in a plastic mold. The temperature of the paste rose to 45 °C within 10 min. To increase the reaction time, 1…2 wt.% of boric acid H3BO3 were added to the mixture. To increase the strength properties of the PMP samples, 10 wt.% of wollastonite CaSiO3 was added to the mixture. After extraction from the plastic form of PMP, the samples were held at a temperature of 20 °C for 28 days. As a result, samples of the compositions (KMgPO4∙6H2O), (KMgPO4∙6H2O + 10 wt.%CaSiO3) and (KMgPO4∙6H2O + 10…15 wt.%CsCl) were obtained in the form of a cube with dimensions of 20x20x20 mm and cylindrical samples with a diameter of 19 mm and a height of 35 mm (Fig. 1,a). Irradiation by electrons and bremsstrahlung γ-radiation of PMP samples was carried out on the accelerator KUT-1 up to a set of absorbed dose of 10 10 rad and bremsstrahlung γ-radiation – 10 8 rad. The target, in which the samples were placed, exposed to electrons, was cooled with water. Therefore, to prevent the interaction of the PMP material with water samples during electron irradiation, the samples were placed in 0.3 mm stainless steel capsules (see Fig. 1,b). Containers with PMP samples were irradiated with electrons along the axis of the cylindrical capsules. PMP samples were irradiated with bremsstrahlung γ-radiation in an aluminum foil. Samples were irradiated with bremsstrahlung γ-radiation in air. The amount of absorbed dose was chosen taking into account the requirements for the materials of containers for the packaging, transportation and storage of radioactive waste (including spent nuclear fuel, low – and high – active waste). According to the requirements, the material of the container must have radiation resistance of 10 8 rad or higher under irradiation conditions, in the case of necessity. The radiation dose of 10 8 rad is based on its equality to the total dose received in more than 300 years by radioactive waste containing 137 Cs or 90 Sr at a concentration of 10 Ci/ft 3 [13]. a b c Fig. 1. PMP samples: a – view; b – in capsules before electron irradiation; c – after electron irradiation ISSN 1562-6016. ВАНТ. 2018. №5(117) 77 a b Fig. 2. The appearance of the container with a sample for performing the leaching test: a – PCT; b – ANS 16.1 Corrosion resistance to the leaching of the main components of the PMP matrix (K, Mg, P) was determined in accordance with the PCT test. To carry out the corrosion resistance tests, a Teflon container was used. The starting PMP samples were ground and then sieved. The resulting powder was washed in distilled water and acetone in an ultrasonic bath. Next, the dried purified powder was milled in a Teflon container and water was added according to the ASTM C1285 standard (Fig. 2,a). The container was placed in a thermostat for 7 days at a temperature of (90±2) °C. After the test, the resulting leach was filtered from the powder particles. The concentration of elements in the leachate was determined by ICP-AES. The normalized leaching rate of the elements was calculated by the formula: ),/( tSfVcR ii (1) where R is the normalized leaching rate of the element, g/(m 2 ∙day); ci is the concentration of the i-th element in the solution after leaching, g/l; V is the volume of the leaching water, l; S is the specific surface area of the milled sample, m 2 ; fi is the content of the i-th element in the matrix; t – leaching time, days. Corrosion resistance of the resulting PMP matrices with respect to cesium leaching was determined in accordance with ANSI/ANS 16.1–1986 test “Measurement of the leach-ability of a solid-state low- level test procedure” (see Fig. 2,b). This test is usually used to characterize such forms of solidified low-level waste, such as bitumen, concrete and other cementing materials. The ANS 16.1 test provides for the long-term leaching of samples in water at 25 °C at the following time intervals: 2, 5, 17 hour, four 24-hour intervals followed by 14, 28, and 43-day intervals (total time 90 days). Determination of cesium content in the leach was carried out with ICP-AES. The obtained values were used to calculate the effective diffusion coefficient D and leaching indexes Li: , )( / 22 0               S V T t Aa nD n n (2) where D is the effective diffusion coefficient, cm 2 /s; V is the volume of the sample, cm 3 ; S is the geometric surface area of the sample, calculated from the measured sample parameters, cm 2 ; T is the average leaching time, s; an – the amount of the element selected from the sample for the n-th interval; Ao is the total amount of element in the sample prior to leaching; Δtn is the duration of the n-th interval ,log 10 1 10 1 n i i D L                    (3) where Li is the i-element leach index; β is a constant (1.0 cm 2 /s); Di is the effective diffusion coefficient of the i-element. RESULTS AND DISCUSSION IRRADIATION OF PMP SAMPLES BY BREMSSTRAHLUNG γ-RADIATION AND ELECTRONS After irradiation of the PMP samples with bremsstrahlung γ-radiation up to a set of absorbed dose of 10 8 rad, no chemical, phase and noticeable microstructural changes have been detected. Fig. 3,a,b show the diffraction patterns of the sample composition (KMgPO4∙6H2O + 10 wt.%CaSiO3) before and after γ-irradiation. Comparison of the diffractograms shows the complete coincidence of the main X-ray lines of potassium-magnesium phosphate before and after γ-irradiation. In addition, according to IR spectroscopy, irradiation with bremsstrahlung γ-radiation with a maximum energy of 13.5 MeV to a dose of 1.35∙10 5 Gy does not lead to a change in the main phase composition of the PMP samples material, since the number and position of all bands of the spectrum remains unchanged. Changes in the intensity of bands in the IR spectrum are associated with an increase in the degree of crystallinity of the material of the PMP sample after γ-irradiation [14]. 78 ISSN 1562-6016. ВАНТ. 2018. №5(117) Fig. 3. XRD patterns of KMgPO4∙6H2O + 10 wt.% CaSiO3: a – before γ-irradiation; b – after γ-irradiation In contrast to γ-irradiation, not only the KMgPO4∙6H2O and wollastonite CaSiO3 materials but also the anhydrous phosphate KMgPO4 X-ray lines against the halo background at the angles of 20º–2θ–40º were observed on the diffractogram of the sample composition (KMgPO4∙6H2O + 10 wt.%CaSiO3) after electron irradiation with a set of absorbed dose of 10 10 rad (Fig. 4). This fact indicates that after electron irradiation with high energies (10 MeV), partial dehydration and amorphization of the PMP samples took place. As it is known from the DTA/TG analysis [9] that the maximum endothermic peak, which corresponds to the intense dehydration of potassium- magnesium phosphate, is observed at a temperature of 120 °C (Fig. 5). It was shown in [15] that when KMgPO4∙6H2O is heated to a temperature of 200 °C, it completely dehydrates and forms amorphous KMgPO4, which crystallizes at higher temperatures. The obtained results show that irradiation of PMP samples with high-energy electrons leads not only to partial amorphization of potassium magnesium phosphate, but also causes crystallization of amorphous KMgPO4 at temperatures below 100 °C. Externally, PMP samples with wollastonite irradiated by γ-radiation and electrons did not differ from unirradiated samples. Any volume changes and visible damage of the samples were not observed (see Fig. 1,c). No changes in the microstructure of the PMP samples (KMgPO4∙6H2O + 10 wt.%CaSiO3) before and after the electron irradiation were detected by the SEM- method (Fig. 6). In both photographs, the well-bound microstructure of the samples KMgPO4∙6H2O + +10 wt.%CaSiO3, and elongated particles of wollastonite CaSiO3 are seen. However, irradiation with both electrons and γ- radiation leads to a slight change in the density and compression strength of PMP samples with wollastonite. Thus, a slight decrease in the density and compressive strength of KMgPO4∙6H2O + 10 wt.% CaSiO3 samples after γ-radiation is observed (Tabl. 1). Table 1 Density and compressive strength of the samples KMgPO4∙6H2O + 10 wt.% CaSiO3 before and after electron and -irradiation Conditions Density, g/cm 3 Compressive strength, MPa Before irradiation 1.67 12.7 After -irradiation 1.58 11.3 After electron irradiation 1.62 14.4 The decrease in the density and compressive strength after γ-irradiation can be explained on the basis that the energy of radiation can drive away part of the bound water from the samples and, thus, increase the porosity and reduce the strength. In the case of electron irradiation, a less noticeable decrease in the density of the KMgPO4∙6H2O + 10 wt.%CaSiO3 sample is observed. The increase in porosity of the PMP sample surface layer occurs under the radiative action, due to the small penetrating ability of electrons. The increase in the compressive strength of the test samples after irradiation with high-power electrons may be due to the formation of hardening calcium-phosphate inclusions in the process of irradiation. Fig. 4. XRD patterns of KMgPO4∙6H2O + 10 wt.% CaSiO3 after electron irradiation process Fig. 5. DTA/TG analysis of PMP samples a b ISSN 1562-6016. ВАНТ. 2018. №5(117) 79 а b Fig. 6. Microstructure of the samples KMgPO4∙6H2O + 10 wt.% CaSiO3: a – before electron irradiation; b – after electron irradiation Earlier, the authors of [16] noted the increase in compressive strength simultaneously with a decrease in the density of PMP samples with ash additives. Such samples behavior was explained by the formation of calcium-phosphate inclusions in the material, which leads to the strengthening of the material. The rate of such particles formation increases with increasing temperature of PMP material synthesis. In our case, the formation of such hardening calcium-phosphate inclusions can occur due to local heating of the PMP samples with wollastonite CaSiO3 during irradiation with high-energy electrons. Obtained results shown that phase and structural changes in potassium-magnesium-phosphate materials after - irradiation were not detected. The density and compressive strength values of PMP materials before and after the -irradiation were practically not changed. This fact indicates the resistance of the PMP matrices to the radiation effect. In addition, the behavior of the PMP samples obtained under the conditions of irradiation by high-energy electrons up to absorbed doses exceeding the doses that a protective matrix can collect in a real situation of long- term storage of radioactive waste was investigated. After electron irradiation up to an absorbed dose of 10 10 rad, any destruction of the PMP samples was not observed. The electron irradiation was not lead to significant changes in the physic-mechanical characteristics of the PMP materials. LEACHING OF PMP SAMPLES WITH CESIUM CHLORIDE ADDITIONS Corrosion properties of PMP matrices were determined by leaching in water samples of the compositions (KMgPO4∙6H2O + 10…15 wt.%CsCl), in accordance with the requirements of the PCT and ANS 16.1 tests [11, 12]. After conducting the PCT test using ICP-AES, the content of potassium, magnesium, phosphorus and cesium in the solution after leaching was determined. The values were used to calculate the leaching rates of these elements (Tabl. 2). Comparison of the reduced rates of leaching shows that an increase in the concentration of cesium does not lead to a significant change in the values. Low leaching rates at a temperature of 90 °C of the basic elements of the PMP matrix and cesium indicate a high hydrothermal resistance of the PMP matrices. Table 2 Leaching rate of basic elements of PMP matrix and cesium (PCT) Element Normalized Elemental Leach Rates, g/(m 2 ·day) KMgPO4∙6H2O + 10 wt.% CsCl KMgPO4∙6H2O + 15 wt.% CsCl K 2.13·10 -3 2.88·10 -3 Mg 1.62·10 -6 5.20·10 -6 P 4.69·10 -4 4.25·10 -4 Cs 3.46·10 -5 3.04·10 -5 The results of the ANS 16.1 test are presented in Tabl. 3. For cesium, despite the high content in the PMP matrix (10 wt.% CsCl and 15 wt.% CsCl), high values of the leaching indices L (11.5, 11.7), low values of the effective diffusion coefficients D (8.23∙10 -14 , 1.19∙10 -13 cm 2 /s), and the rate of leaching R (2.66∙10 -5 , 1.16∙10 -5 g/(cm 2 ∙day)) with long-term (90 day) leaching at 25 °C is characteristic. It is known that the rates of cesium leaching from various types of glass used for radioactive waste solidification are 10 -4 …10 -6 g/(cm 2 ∙day), the rate of cesium leaching from cemented forms is ≤ 10 -3 g/(cm 2 ∙day), and from the ceramic Synroc ~ 10 -5 g/(cm 2 ∙day) [17]. Thus, according to the level of corrosion resistance with respect to cesium leaching, potassium magnesium phosphates are not inferior to other matrices in use at present. CONCLUSIONS As a result of the acid-base reaction at room temperature, PMP KMgPO4∙6H2O with the addition of wollastonite CaSiO3 (10 wt.%) and cesium chloride CsCl (10 and 15 wt.%) were obtained at room temperature. Simulated irradiation with electrons (E – 10 MeV) and bremsstrahlung γ-radiation of PMP samples to a set of absorbed dose of 10 10 and 10 8 rad, respectively, was carried out. The absence of phase and structural changes in the material of the PMP samples after irradiation processes was established, and also the value of the density and compressive strength was not practically changed. Irradiation with high-energy electrons of PMP samples leads to partial dehydration and amorphization of KMgPO4∙6H2O, as well as crystallization of amorphous KMgPO4. 80 ISSN 1562-6016. ВАНТ. 2018. №5(117) Table 3 Effective Diffusion Coefficient, Leachability Index and Stabilized Leaching Rate of Cs (ANS 16.1) Corrosion properties of PMP matrices were determined by leaching in water samples of the compositions (KMgPO4∙6H2O + 10…15 wt.% CsCl), in accordance with the requirements of the PCT and ANS 16.1 tests. Low leaching rates of the basic elements of the PMP matrix and cesium indicate the high hydrothermal stability of the PMP matrices (PCT). Based on the results of the ANS 16.1 test, the values of cesium leaching rates from PMP matrices are obtained that are at the level of the leaching rates from glasses and ceramics of Synroc. The results of the studies of the radiation and corrosion resistance of the obtained PMP matrices indicate the prospects of potassium-magnesium-phosphate materials application for the solidification of LRW at nuclear power plants. REFERENCES 1. В.М. Ажажа, В.А. Белоус, С.Ю. Саенко и др. Ядерная энергетика. Обращение с отработанным ядерным топливом и радиоактивными отходами. Киев: “Наукова думка”, 2006, 253 с. 2. F.P. Glasser. Progress in the immobilization of radioactive wastes in cement, Cement and Concrete Research. March–May 1992, v. 22 (2–3), p. 201-216. 3. А.С. Никифоров, В.В. Куличенко, М.И. Жиха- рев. Обезвреживание жидких радиоактивных отходов. М.: “Энергоатомиздат”, 1985, с. 184. 4. И.А. Соболев, Л.М. Хомчик. Обезвреживание радиоактивных отходов на централизованных пунктах. М.: «Энергоатомиздат», 1983. 5. A.I. Borzunov, S.V. D’yakov, and P.P. Poluéktov. Immobilization of radioactive wastes by embedding in phosphate ceramic // Atomic Energy. 2004, v. 96, N 2, p. 123-126. 6. Arun S. Wagh. Chemically Bonded Phosphate Ceramics, Twenty-First Century Materials with Diverse Application, Second Edition. Elsevier Ltd, 2016, 400 p. 7. D. Singh, V.R. Mandalika, S.J. Parulekar, A.S. Wagh. Magnesium potassium phosphate ceramic for 99 Tc immobilization // Journal of Nuclear Materials. 2006, v. 348, p. 272-282. 8. A. Wagh, R. Strain, S.Y. Jeong, D. Reed, T. Krause, D. Singh. Stabilization of Rocky Flats Pu- contaminated ash within chemically bonded phosphate ceramics // J. Nucl. Mater. 1999, v. 265, N 3, p. 295-307. 9. S.Y. Sayenko, A.S. Wagh, V.A. Shkuropatenko, O.P. Bereznyak, Y.S. Hodyreva, R.V. Tarasov, V.D. Virych, Е.А. Ulybkina, O.V. Pylypenko, G.O. Kholomeev, A.V. Zykova. Cesium immobilization into potassium magnesium phosphate matrix // Problems of Atomic Science and Technology. Series “Physics of Radiation Effects and Radiation Materials Science”. 2017, N 4 (110), p. 65-73. 10. S.E. Vinokurov, Y.M. Kulyako, O.M. Slyun- tchev, S.I. Rovny, and B.F. Myasoedov. Low-temperature immobilization of actinides and other components of high-level waste in magnesium potassium phosphate matrices // Journal of Nuclear Materials. 2009, v. 385, N 1, p. 89-192. 11. Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT). Published August 2008. Originally approved in 1994. Last previous edition approved in 2002 as C1285 – 02. DOI: 10.1520/C1285- 02R08. 12. Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-Term Test Procedure: ANSI/ANS 16.1 – 1986. La Grange Park, IL: Am. Nat. Soc., 1986. 13. U.S. Nuclear Regulatory Commission, Office of Nuclear Materials Safety and Safeguards, “Technical Position on waste Form” (Revision 1), January 1991. 14. E.P. Bereznyak, N.P. Dikiy, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, S.Y. Sayenko, V.L. Uvarov, I.D. Fedorets, Y.S. Hodyreva. The effect of gamma-radiation on structure of struvite-k // Problems of Atomic Science and Technology. Series “Physics of Radiation Effects and Radiation Materials Science”. 2017, N 6 (112), p. 122-125. 15. L.J. Gardner, V. Lejeune, C.L. Corkhill, S.A. Bernal, J.L. Provis, M.C. Stennett, and N.C. Hyatt. Evolution of phase assemblage of blended magnesium potassium phosphate cement binders at 200 and 1000 ºC // Advances in Applied Ceramics. 2015, v. 114, N 7, p. 386-392. 16. A.S. Wagh, S.Y. Jeong, and D. Singh. High strength phosphate cement using industrial byproducts ashes // Proceedings of the 1st International Conference on High Strength Concrete / A. Azizinmini, D. Darwin, and C. French, Eds. The American Society of Civil Engineers, 1997, p. 542-553. 17. J. Campbell, C. Hoenig, F. Bazan, F. Ryerson, M. Guinan, R. Van Konynenburg, R. Rozsa. Properties of SYNROC-D Nuclear Waste Form. A State-of-the-Art Review. Livermore: Lawrence Livermore National Laboratory, 1981, 94 p. Статья поступила в редакцию 02.08.2018 г. Parameter Sample KMgPO4∙6H2O +10 wt.% CsCl KMgPO4∙6H2O +15 wt.% CsCl Effective Diffusion Coefficient D, cm 2 /s Leachability Index L Stabilized Leaching Rate R, g/(cm 2 ·day) 8.23·10 -14 11.5 2.66·10 -5 1.19·10 -13 11.7 1.16·10 -5 ISSN 1562-6016. ВАНТ. 2018. №5(117) 81 КОРРОЗИОННАЯ И РАДИАЦИОННАЯ СТОЙКОСТЬ КАЛИЙ-МАГНИЙ-ФОСФАТНЫХ МАТРИЦ С.Ю. Саенко, В.A. Шкуропатенко, A.В. Зыкова, А.Е. Сурков, А.В. Пилипенко, Е.А. Улыбкина, K.В. Лобач Исследована коррозионная и радиационная стойкость калий-магний-фосфатных (КМФ) матриц для отверждения жидких радиоактивных отходов АЭС. Показана высокая коррозионная стойкость КМФ-матриц к выщелачиванию как основных компонентов матрицы, так и цезия. Результаты выполненной работы показали устойчивость физических и механических свойств, а также фазового состава и микроструктуры КМФ после имитации -облучением до поглощенной дозы 10 8 рад. Было установлено, что облучение высокоэнергетическими электронами до поглощенной дозы 10 10 рад приводит к частичной дегидратации и аморфизации КМФ. КОРОЗІЙНА ТА РАДІАЦІЙНА СТІЙКІСТЬ КАЛІЙ-МАГНІЙ-ФОСФАТНИХ МАТРИЦЬ С.Ю. Саєнко, В.A. Шкуропатенко, А.В. Зикова, О.Є. Сурков, О.В. Пилипенко, К.А. Улибкіна, K.В. Лобач Досліджена корозійна та радіаційна стійкість калій-магній-фосфатних (КМФ) матриць для затвердіння рідких радіоактивних відходів АЕС. Показана висока корозійна стійкість КМФ-матриць до вилуговування як основних компонентів матриці, так і цезію. Результати виконаної роботи показали стійкість фізичних та механічних властивостей, а також фазового складу і мікроструктури КМФ після імітації -опроміненням до поглиненої дози 10 8 рад. Було встановлено, що опромінення високоенергетичними електронами до поглиненої дози 10 10 рад призводить до часткової дегідратації та аморфізації КМФ.