Nijenhuis Integrability for Killing Tensors
The fundamental tool in the classification of orthogonal coordinate systems in which the Hamilton-Jacobi and other prominent equations can be solved by a separation of variables are second order Killing tensors which satisfy the Nijenhuis integrability conditions. The latter are a system of three no...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2016 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2016
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147721 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Nijenhuis Integrability for Killing Tensors / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147721 |
|---|---|
| record_format |
dspace |
| spelling |
Schöbel, K. 2019-02-15T18:42:06Z 2019-02-15T18:42:06Z 2016 Nijenhuis Integrability for Killing Tensors / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 70H06; 53A60; 53B20 DOI:10.3842/SIGMA.2016.024 https://nasplib.isofts.kiev.ua/handle/123456789/147721 The fundamental tool in the classification of orthogonal coordinate systems in which the Hamilton-Jacobi and other prominent equations can be solved by a separation of variables are second order Killing tensors which satisfy the Nijenhuis integrability conditions. The latter are a system of three non-linear partial differential equations. We give a simple and completely algebraic proof that for a Killing tensor the third and most complicated of these equations is redundant. This considerably simplifies the classification of orthogonal separation coordinates on arbitrary (pseudo-)Riemannian manifolds. This paper is a contribution to the Special Issue on Analytical Mechanics and Dif ferential Geometry in honour of Sergio Benenti. The full collection is available at http://www.emis.de/journals/SIGMA/Benenti.html. The author would like to acknowledge the anonymous referees for their contribution to improve the paper. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Nijenhuis Integrability for Killing Tensors Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Nijenhuis Integrability for Killing Tensors |
| spellingShingle |
Nijenhuis Integrability for Killing Tensors Schöbel, K. |
| title_short |
Nijenhuis Integrability for Killing Tensors |
| title_full |
Nijenhuis Integrability for Killing Tensors |
| title_fullStr |
Nijenhuis Integrability for Killing Tensors |
| title_full_unstemmed |
Nijenhuis Integrability for Killing Tensors |
| title_sort |
nijenhuis integrability for killing tensors |
| author |
Schöbel, K. |
| author_facet |
Schöbel, K. |
| publishDate |
2016 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
The fundamental tool in the classification of orthogonal coordinate systems in which the Hamilton-Jacobi and other prominent equations can be solved by a separation of variables are second order Killing tensors which satisfy the Nijenhuis integrability conditions. The latter are a system of three non-linear partial differential equations. We give a simple and completely algebraic proof that for a Killing tensor the third and most complicated of these equations is redundant. This considerably simplifies the classification of orthogonal separation coordinates on arbitrary (pseudo-)Riemannian manifolds.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147721 |
| citation_txt |
Nijenhuis Integrability for Killing Tensors / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT schobelk nijenhuisintegrabilityforkillingtensors |
| first_indexed |
2025-12-07T15:27:44Z |
| last_indexed |
2025-12-07T15:27:44Z |
| _version_ |
1850863794724536320 |