Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs

Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobás-Riordan polynomials [Math. Ann. 323 (2002), 81-96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2016
Автор: Avohou, R.C.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147726
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs / R.C. Avohou // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147726
record_format dspace
spelling Avohou, R.C.
2019-02-15T18:46:43Z
2019-02-15T18:46:43Z
2016
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs / R.C. Avohou // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 18 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 05C10; 57M15
DOI:10.3842/SIGMA.2016.030
https://nasplib.isofts.kiev.ua/handle/123456789/147726
Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobás-Riordan polynomials [Math. Ann. 323 (2002), 81-96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find in dimension D≥3 a modified Euler characteristic with D−2 parameters. Using this modified invariant, we extend the rank 3 weakly-colored graph polynomial, and its main properties, on rank 4 and then on arbitrary rank D weakly-colored stranded graphs.
Numerous discussions with Joseph Ben Geloun and Mahouton N. Hounkonnou have been hugely beneficial for this work and gratefully acknowledged. The author acknowledges the support of Max-Planck Institute for Gravitational Physics, Albert Einstein Institute, and the Association pour la Promotion Scientifique de l’Afrique. The ICMPA is also in partnership with the Daniel Iagolnitzer Foundation (DIF), France.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs
spellingShingle Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs
Avohou, R.C.
title_short Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs
title_full Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs
title_fullStr Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs
title_full_unstemmed Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs
title_sort polynomial invariants for arbitrary rank d weakly-colored stranded graphs
author Avohou, R.C.
author_facet Avohou, R.C.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobás-Riordan polynomials [Math. Ann. 323 (2002), 81-96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find in dimension D≥3 a modified Euler characteristic with D−2 parameters. Using this modified invariant, we extend the rank 3 weakly-colored graph polynomial, and its main properties, on rank 4 and then on arbitrary rank D weakly-colored stranded graphs.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147726
fulltext
citation_txt Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs / R.C. Avohou // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT avohourc polynomialinvariantsforarbitraryrankdweaklycoloredstrandedgraphs
first_indexed 2025-11-24T15:15:47Z
last_indexed 2025-11-24T15:15:47Z
_version_ 1850847945720594432