Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs
Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobás-Riordan polynomials [Math. Ann. 323 (2002), 81-96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2016 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2016
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147726 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs / R.C. Avohou // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147726 |
|---|---|
| record_format |
dspace |
| spelling |
Avohou, R.C. 2019-02-15T18:46:43Z 2019-02-15T18:46:43Z 2016 Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs / R.C. Avohou // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 18 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 05C10; 57M15 DOI:10.3842/SIGMA.2016.030 https://nasplib.isofts.kiev.ua/handle/123456789/147726 Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobás-Riordan polynomials [Math. Ann. 323 (2002), 81-96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find in dimension D≥3 a modified Euler characteristic with D−2 parameters. Using this modified invariant, we extend the rank 3 weakly-colored graph polynomial, and its main properties, on rank 4 and then on arbitrary rank D weakly-colored stranded graphs. Numerous discussions with Joseph Ben Geloun and Mahouton N. Hounkonnou have been hugely beneficial for this work and gratefully acknowledged. The author acknowledges the support of Max-Planck Institute for Gravitational Physics, Albert Einstein Institute, and the Association pour la Promotion Scientifique de l’Afrique. The ICMPA is also in partnership with the Daniel Iagolnitzer Foundation (DIF), France. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs |
| spellingShingle |
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs Avohou, R.C. |
| title_short |
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs |
| title_full |
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs |
| title_fullStr |
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs |
| title_full_unstemmed |
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs |
| title_sort |
polynomial invariants for arbitrary rank d weakly-colored stranded graphs |
| author |
Avohou, R.C. |
| author_facet |
Avohou, R.C. |
| publishDate |
2016 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobás-Riordan polynomials [Math. Ann. 323 (2002), 81-96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find in dimension D≥3 a modified Euler characteristic with D−2 parameters. Using this modified invariant, we extend the rank 3 weakly-colored graph polynomial, and its main properties, on rank 4 and then on arbitrary rank D weakly-colored stranded graphs.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147726 |
| fulltext |
|
| citation_txt |
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs / R.C. Avohou // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 18 назв. — англ. |
| work_keys_str_mv |
AT avohourc polynomialinvariantsforarbitraryrankdweaklycoloredstrandedgraphs |
| first_indexed |
2025-11-24T15:15:47Z |
| last_indexed |
2025-11-24T15:15:47Z |
| _version_ |
1850847945720594432 |