Cohomology of the Moduli Space of Rank Two, Odd Degree Vector Bundles over a Real Curve

We consider the moduli space of rank two, odd degree, semi-stable Real vector bundles over a real curve, calculating the singular cohomology ring in odd and zero characteristic for most examples.

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2016
Автор: Baird, T.J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147727
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Cohomology of the Moduli Space of Rank Two, Odd Degree Vector Bundles over a Real Curve / T.J. Baird // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147727
record_format dspace
spelling Baird, T.J.
2019-02-15T18:47:59Z
2019-02-15T18:47:59Z
2016
Cohomology of the Moduli Space of Rank Two, Odd Degree Vector Bundles over a Real Curve / T.J. Baird // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 14 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53D30; 55R10; 55T20
DOI:10.3842/SIGMA.2016.072
https://nasplib.isofts.kiev.ua/handle/123456789/147727
We consider the moduli space of rank two, odd degree, semi-stable Real vector bundles over a real curve, calculating the singular cohomology ring in odd and zero characteristic for most examples.
A special thanks to Jacques Hurtubise and Ben Smith who began this project as collaborators and contributed to some of the exposition. Jacques in particular helped motivate this project by establishing criteria for the normal bundles of the real Harder–Narasimhan stratification to be non-orientable (a proof later superseded by the work of Okonek–Teleman). Thanks also to Andrei Teleman and other the participants at the Real vector bundles conference in Brest for helpful discussions, and to the referees for helpful comments. This research was supported by an NSERC Discovery Grant.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Cohomology of the Moduli Space of Rank Two, Odd Degree Vector Bundles over a Real Curve
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Cohomology of the Moduli Space of Rank Two, Odd Degree Vector Bundles over a Real Curve
spellingShingle Cohomology of the Moduli Space of Rank Two, Odd Degree Vector Bundles over a Real Curve
Baird, T.J.
title_short Cohomology of the Moduli Space of Rank Two, Odd Degree Vector Bundles over a Real Curve
title_full Cohomology of the Moduli Space of Rank Two, Odd Degree Vector Bundles over a Real Curve
title_fullStr Cohomology of the Moduli Space of Rank Two, Odd Degree Vector Bundles over a Real Curve
title_full_unstemmed Cohomology of the Moduli Space of Rank Two, Odd Degree Vector Bundles over a Real Curve
title_sort cohomology of the moduli space of rank two, odd degree vector bundles over a real curve
author Baird, T.J.
author_facet Baird, T.J.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We consider the moduli space of rank two, odd degree, semi-stable Real vector bundles over a real curve, calculating the singular cohomology ring in odd and zero characteristic for most examples.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147727
citation_txt Cohomology of the Moduli Space of Rank Two, Odd Degree Vector Bundles over a Real Curve / T.J. Baird // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT bairdtj cohomologyofthemodulispaceofranktwoodddegreevectorbundlesoverarealcurve
first_indexed 2025-11-30T17:43:18Z
last_indexed 2025-11-30T17:43:18Z
_version_ 1850858331795619840