Orthogonality Measure on the Torus for Vector-Valued Jack Polynomials
For each irreducible module of the symmetric group on N objects there is a set of parametrized nonsymmetric Jack polynomials in N variables taking values in the module. These polynomials are simultaneous eigenfunctions of a commutative set of operators, self-adjoint with respect to certain Hermitian...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2016 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2016
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/147731 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Orthogonality Measure on the Torus for Vector-Valued Jack Polynomials / C.F. Dunkl // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | For each irreducible module of the symmetric group on N objects there is a set of parametrized nonsymmetric Jack polynomials in N variables taking values in the module. These polynomials are simultaneous eigenfunctions of a commutative set of operators, self-adjoint with respect to certain Hermitian forms. These polynomials were studied by the author and J.-G. Luque using a Yang-Baxter graph technique. This paper constructs a matrix-valued measure on the N-torus for which the polynomials are mutually orthogonal. The construction uses Fourier analysis techniques. Recursion relations for the Fourier-Stieltjes coefficients of the measure are established, and used to identify parameter values for which the construction fails. It is shown that the absolutely continuous part of the measure satisfies a first-order system of differential equations.
|
|---|---|
| ISSN: | 1815-0659 |