Zeros of Quasi-Orthogonal Jacobi Polynomials

We consider interlacing properties satisfied by the zeros of Jacobi polynomials in quasi-orthogonal sequences characterised by α>−1, −2<β<−1. We give necessary and sufficient conditions under which a conjecture by Askey, that the zeros of Jacobi polynomials P(α,β)n and P(α,β+2)n are interla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2016
Hauptverfasser: Driver, K., Jordaan, K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147743
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Zeros of Quasi-Orthogonal Jacobi Polynomials / K. Driver, K. Jordaan // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147743
record_format dspace
spelling Driver, K.
Jordaan, K.
2019-02-15T19:02:14Z
2019-02-15T19:02:14Z
2016
Zeros of Quasi-Orthogonal Jacobi Polynomials / K. Driver, K. Jordaan // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33C50; 42C05
DOI:10.3842/SIGMA.2016.042
https://nasplib.isofts.kiev.ua/handle/123456789/147743
We consider interlacing properties satisfied by the zeros of Jacobi polynomials in quasi-orthogonal sequences characterised by α>−1, −2<β<−1. We give necessary and sufficient conditions under which a conjecture by Askey, that the zeros of Jacobi polynomials P(α,β)n and P(α,β+2)n are interlacing, holds when the parameters α and β are in the range α>−1 and −2<β<−1. We prove that the zeros of P(α,β)n and P(α,β)n₊₁ do not interlace for any n∈N, n≥2 and any fixed α, β with α>−1, −2<β<−1. The interlacing of zeros of P(α,β)n and P(α,β+t)m for m,n∈N is discussed for α and β in this range, t≥1, and new upper and lower bounds are derived for the zero of P(α,β)n that is less than −1.
This paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications. The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html. The research of both authors was funded by the National Research Foundation of South Africa. We thank the referees for helpful suggestions and insights.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Zeros of Quasi-Orthogonal Jacobi Polynomials
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Zeros of Quasi-Orthogonal Jacobi Polynomials
spellingShingle Zeros of Quasi-Orthogonal Jacobi Polynomials
Driver, K.
Jordaan, K.
title_short Zeros of Quasi-Orthogonal Jacobi Polynomials
title_full Zeros of Quasi-Orthogonal Jacobi Polynomials
title_fullStr Zeros of Quasi-Orthogonal Jacobi Polynomials
title_full_unstemmed Zeros of Quasi-Orthogonal Jacobi Polynomials
title_sort zeros of quasi-orthogonal jacobi polynomials
author Driver, K.
Jordaan, K.
author_facet Driver, K.
Jordaan, K.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We consider interlacing properties satisfied by the zeros of Jacobi polynomials in quasi-orthogonal sequences characterised by α>−1, −2<β<−1. We give necessary and sufficient conditions under which a conjecture by Askey, that the zeros of Jacobi polynomials P(α,β)n and P(α,β+2)n are interlacing, holds when the parameters α and β are in the range α>−1 and −2<β<−1. We prove that the zeros of P(α,β)n and P(α,β)n₊₁ do not interlace for any n∈N, n≥2 and any fixed α, β with α>−1, −2<β<−1. The interlacing of zeros of P(α,β)n and P(α,β+t)m for m,n∈N is discussed for α and β in this range, t≥1, and new upper and lower bounds are derived for the zero of P(α,β)n that is less than −1.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147743
citation_txt Zeros of Quasi-Orthogonal Jacobi Polynomials / K. Driver, K. Jordaan // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ.
work_keys_str_mv AT driverk zerosofquasiorthogonaljacobipolynomials
AT jordaank zerosofquasiorthogonaljacobipolynomials
first_indexed 2025-12-07T17:40:27Z
last_indexed 2025-12-07T17:40:27Z
_version_ 1850872144437706752