One-Step Recurrences for Stationary Random Fields on the Sphere

This paper develops operators for zonal functions on the sphere which preserve (strict) positive definiteness while moving up and down in the ladder of dimensions by steps of one. These fractional operators are constructed to act appropriately on the Gegenbauer polynomials {Cλn}.

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2016
Автори: Beatson, R.K., W. zu Castell
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147744
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:One-Step Recurrences for Stationary Random Fields on the Sphere / R.K. Beatson, W. zu Castell // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147744
record_format dspace
spelling Beatson, R.K.
W. zu Castell
2019-02-15T19:05:06Z
2019-02-15T19:05:06Z
2016
One-Step Recurrences for Stationary Random Fields on the Sphere / R.K. Beatson, W. zu Castell // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 42A82; 33C45; 42C10; 62M30
DOI:10.3842/SIGMA.2016.043
https://nasplib.isofts.kiev.ua/handle/123456789/147744
This paper develops operators for zonal functions on the sphere which preserve (strict) positive definiteness while moving up and down in the ladder of dimensions by steps of one. These fractional operators are constructed to act appropriately on the Gegenbauer polynomials {Cλn}.
This paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications. The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html. The authors thank the editor and the referees for their helpful suggestions. WzC acknowledges. support from a University of Canterbury Visiting Erskine Fellowship. RKB is grateful for the hospitality provided by the Helmholtz Zentrum M¨unchen.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
One-Step Recurrences for Stationary Random Fields on the Sphere
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title One-Step Recurrences for Stationary Random Fields on the Sphere
spellingShingle One-Step Recurrences for Stationary Random Fields on the Sphere
Beatson, R.K.
W. zu Castell
title_short One-Step Recurrences for Stationary Random Fields on the Sphere
title_full One-Step Recurrences for Stationary Random Fields on the Sphere
title_fullStr One-Step Recurrences for Stationary Random Fields on the Sphere
title_full_unstemmed One-Step Recurrences for Stationary Random Fields on the Sphere
title_sort one-step recurrences for stationary random fields on the sphere
author Beatson, R.K.
W. zu Castell
author_facet Beatson, R.K.
W. zu Castell
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description This paper develops operators for zonal functions on the sphere which preserve (strict) positive definiteness while moving up and down in the ladder of dimensions by steps of one. These fractional operators are constructed to act appropriately on the Gegenbauer polynomials {Cλn}.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147744
fulltext
citation_txt One-Step Recurrences for Stationary Random Fields on the Sphere / R.K. Beatson, W. zu Castell // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ.
work_keys_str_mv AT beatsonrk onesteprecurrencesforstationaryrandomfieldsonthesphere
AT wzucastell onesteprecurrencesforstationaryrandomfieldsonthesphere
first_indexed 2025-11-25T20:49:29Z
last_indexed 2025-11-25T20:49:29Z
_version_ 1850536788125286400