One-Step Recurrences for Stationary Random Fields on the Sphere
This paper develops operators for zonal functions on the sphere which preserve (strict) positive definiteness while moving up and down in the ladder of dimensions by steps of one. These fractional operators are constructed to act appropriately on the Gegenbauer polynomials {Cλn}.
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2016 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2016
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147744 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | One-Step Recurrences for Stationary Random Fields on the Sphere / R.K. Beatson, W. zu Castell // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147744 |
|---|---|
| record_format |
dspace |
| spelling |
Beatson, R.K. W. zu Castell 2019-02-15T19:05:06Z 2019-02-15T19:05:06Z 2016 One-Step Recurrences for Stationary Random Fields on the Sphere / R.K. Beatson, W. zu Castell // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 42A82; 33C45; 42C10; 62M30 DOI:10.3842/SIGMA.2016.043 https://nasplib.isofts.kiev.ua/handle/123456789/147744 This paper develops operators for zonal functions on the sphere which preserve (strict) positive definiteness while moving up and down in the ladder of dimensions by steps of one. These fractional operators are constructed to act appropriately on the Gegenbauer polynomials {Cλn}. This paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications. The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html. The authors thank the editor and the referees for their helpful suggestions. WzC acknowledges. support from a University of Canterbury Visiting Erskine Fellowship. RKB is grateful for the hospitality provided by the Helmholtz Zentrum M¨unchen. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications One-Step Recurrences for Stationary Random Fields on the Sphere Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
One-Step Recurrences for Stationary Random Fields on the Sphere |
| spellingShingle |
One-Step Recurrences for Stationary Random Fields on the Sphere Beatson, R.K. W. zu Castell |
| title_short |
One-Step Recurrences for Stationary Random Fields on the Sphere |
| title_full |
One-Step Recurrences for Stationary Random Fields on the Sphere |
| title_fullStr |
One-Step Recurrences for Stationary Random Fields on the Sphere |
| title_full_unstemmed |
One-Step Recurrences for Stationary Random Fields on the Sphere |
| title_sort |
one-step recurrences for stationary random fields on the sphere |
| author |
Beatson, R.K. W. zu Castell |
| author_facet |
Beatson, R.K. W. zu Castell |
| publishDate |
2016 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
This paper develops operators for zonal functions on the sphere which preserve (strict) positive definiteness while moving up and down in the ladder of dimensions by steps of one. These fractional operators are constructed to act appropriately on the Gegenbauer polynomials {Cλn}.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147744 |
| fulltext |
|
| citation_txt |
One-Step Recurrences for Stationary Random Fields on the Sphere / R.K. Beatson, W. zu Castell // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ. |
| work_keys_str_mv |
AT beatsonrk onesteprecurrencesforstationaryrandomfieldsonthesphere AT wzucastell onesteprecurrencesforstationaryrandomfieldsonthesphere |
| first_indexed |
2025-11-25T20:49:29Z |
| last_indexed |
2025-11-25T20:49:29Z |
| _version_ |
1850536788125286400 |