One-Step Recurrences for Stationary Random Fields on the Sphere
This paper develops operators for zonal functions on the sphere which preserve (strict) positive definiteness while moving up and down in the ladder of dimensions by steps of one. These fractional operators are constructed to act appropriately on the Gegenbauer polynomials {Cλn}.
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2016 |
| Hauptverfasser: | Beatson, R.K., W. zu Castell |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2016
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147744 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | One-Step Recurrences for Stationary Random Fields on the Sphere / R.K. Beatson, W. zu Castell // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Thinplate Splines on the Sphere
von: Beatson, R.K., et al.
Veröffentlicht: (2018) -
Analytical theory of one- and two-dimensional hard sphere fluids in random porous media
von: Holovko, M.F., et al.
Veröffentlicht: (2010) -
Asymptotic properties of the method of empirical estimate for non-stationary random fields
von: D. A. Gololobov
Veröffentlicht: (2018) -
Comparing one-step and two-step iterative methods in convergence energy
von: V. G. Prikazchikov, et al.
Veröffentlicht: (2017) -
Multidimensional random motion with uniformly distributed changes of direction and Erlang steps
von: Pogorui, A.O., et al.
Veröffentlicht: (2011)