Universal Lie Formulas for Higher Antibrackets

We prove that the hierarchy of higher antibrackets (aka higher Koszul brackets, aka Koszul braces) of a linear operator Δ on a commutative superalgebra can be defined by some universal formulas involving iterated Nijenhuis-Richardson brackets having as arguments Δ and the multiplication operators. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2016
Hauptverfasser: Manetti, M., Ricciardi, G.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147749
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Universal Lie Formulas for Higher Antibrackets / M. Manetti, G. Ricciardi // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 30 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147749
record_format dspace
spelling Manetti, M.
Ricciardi, G.
2019-02-15T19:08:20Z
2019-02-15T19:08:20Z
2016
Universal Lie Formulas for Higher Antibrackets / M. Manetti, G. Ricciardi // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 30 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17B60; 17B70
DOI:10.3842/SIGMA.2016.053
https://nasplib.isofts.kiev.ua/handle/123456789/147749
We prove that the hierarchy of higher antibrackets (aka higher Koszul brackets, aka Koszul braces) of a linear operator Δ on a commutative superalgebra can be defined by some universal formulas involving iterated Nijenhuis-Richardson brackets having as arguments Δ and the multiplication operators. As a byproduct, we can immediately extend higher antibrackets to noncommutative algebras in a way preserving the validity of generalized Jacobi identities.
We thank Bruno Vallette for useful comments and for bringing to our attention the pre-Lie Magnus expansion. We are indebted with the anonymous referees for several remarks and especially for letting us into the knowledge of the papers [3, 28]. M.M. acknowledges partial support by Italian MIUR under PRIN project 2012KNL88Y “Spazi di moduli e teoria di Lie”; G.R. acknowledges partial support by Italian MIUR under PRIN project 2010YJ2NYW and INFN under specific initiative QNP.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Universal Lie Formulas for Higher Antibrackets
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Universal Lie Formulas for Higher Antibrackets
spellingShingle Universal Lie Formulas for Higher Antibrackets
Manetti, M.
Ricciardi, G.
title_short Universal Lie Formulas for Higher Antibrackets
title_full Universal Lie Formulas for Higher Antibrackets
title_fullStr Universal Lie Formulas for Higher Antibrackets
title_full_unstemmed Universal Lie Formulas for Higher Antibrackets
title_sort universal lie formulas for higher antibrackets
author Manetti, M.
Ricciardi, G.
author_facet Manetti, M.
Ricciardi, G.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We prove that the hierarchy of higher antibrackets (aka higher Koszul brackets, aka Koszul braces) of a linear operator Δ on a commutative superalgebra can be defined by some universal formulas involving iterated Nijenhuis-Richardson brackets having as arguments Δ and the multiplication operators. As a byproduct, we can immediately extend higher antibrackets to noncommutative algebras in a way preserving the validity of generalized Jacobi identities.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147749
citation_txt Universal Lie Formulas for Higher Antibrackets / M. Manetti, G. Ricciardi // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 30 назв. — англ.
work_keys_str_mv AT manettim universallieformulasforhigherantibrackets
AT ricciardig universallieformulasforhigherantibrackets
first_indexed 2025-12-07T18:18:32Z
last_indexed 2025-12-07T18:18:32Z
_version_ 1850874541010583552