The Multi-Orientable Random Tensor Model, a Review

After its introduction (initially within a group field theory framework) in [Tanasa A., J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694], the multi-orientable (MO) tensor model grew over the last years into a solid alternative of the celebrated colored (and colored-like) random...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2016
Main Author: Tanasa, A.
Format: Article
Language:English
Published: Інститут математики НАН України 2016
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/147752
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:The Multi-Orientable Random Tensor Model, a Review / A. Tanasa // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 38 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147752
record_format dspace
spelling Tanasa, A.
2019-02-15T19:09:54Z
2019-02-15T19:09:54Z
2016
The Multi-Orientable Random Tensor Model, a Review / A. Tanasa // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 38 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 05C90; 60B20; 81Q30; 81T99
DOI:10.3842/SIGMA.2016.056
https://nasplib.isofts.kiev.ua/handle/123456789/147752
After its introduction (initially within a group field theory framework) in [Tanasa A., J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694], the multi-orientable (MO) tensor model grew over the last years into a solid alternative of the celebrated colored (and colored-like) random tensor model. In this paper we review the most important results of the study of this MO model: the implementation of the 1/N expansion and of the large N limit (N being the size of the tensor), the combinatorial analysis of the various terms of this expansion and finally, the recent implementation of a double scaling limit.
This paper is a contribution to the Special Issue on Tensor Models, Formalism and Applications. The full collection is available at http://www.emis.de/journals/SIGMA/Tensor Models.html. The author is partially supported by the grants ANR JCJC CombPhysMat2Tens and PN 09 37 01 02.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Multi-Orientable Random Tensor Model, a Review
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Multi-Orientable Random Tensor Model, a Review
spellingShingle The Multi-Orientable Random Tensor Model, a Review
Tanasa, A.
title_short The Multi-Orientable Random Tensor Model, a Review
title_full The Multi-Orientable Random Tensor Model, a Review
title_fullStr The Multi-Orientable Random Tensor Model, a Review
title_full_unstemmed The Multi-Orientable Random Tensor Model, a Review
title_sort multi-orientable random tensor model, a review
author Tanasa, A.
author_facet Tanasa, A.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description After its introduction (initially within a group field theory framework) in [Tanasa A., J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694], the multi-orientable (MO) tensor model grew over the last years into a solid alternative of the celebrated colored (and colored-like) random tensor model. In this paper we review the most important results of the study of this MO model: the implementation of the 1/N expansion and of the large N limit (N being the size of the tensor), the combinatorial analysis of the various terms of this expansion and finally, the recent implementation of a double scaling limit.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147752
citation_txt The Multi-Orientable Random Tensor Model, a Review / A. Tanasa // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 38 назв. — англ.
work_keys_str_mv AT tanasaa themultiorientablerandomtensormodelareview
AT tanasaa multiorientablerandomtensormodelareview
first_indexed 2025-12-07T19:17:36Z
last_indexed 2025-12-07T19:17:36Z
_version_ 1850878256990912512