Singular Instantons and Painlevé VI
We consider a two parameter family of instantons, which is studied in [Sadun L., Comm. Math. Phys. 163 (1994), 257-291], invariant under the irreducible action of SU₂ on S⁴, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2016 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2016
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147753 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Singular Instantons and Painlevé VI / R. Muñiz Manasliski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 24 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We consider a two parameter family of instantons, which is studied in [Sadun L., Comm. Math. Phys. 163 (1994), 257-291], invariant under the irreducible action of SU₂ on S⁴, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé VI equations (PVI) and we will give an explicit expression of the map between instantons and solutions to PVI. The solutions are algebraic only for that values of the parameters which correspond to the instantons that can be extended to all of S⁴. This work is a generalization of [Muñiz Manasliski R., Contemp. Math., Vol. 434, Amer. Math. Soc., Providence, RI, 2007, 215-222] and [Muñiz Manasliski R., J. Geom. Phys. 59 (2009), 1036-1047, arXiv:1602.07221], where instantons without singularities are studied.
|
|---|---|
| ISSN: | 1815-0659 |