Singular Instantons and Painlevé VI
We consider a two parameter family of instantons, which is studied in [Sadun L., Comm. Math. Phys. 163 (1994), 257-291], invariant under the irreducible action of SU₂ on S⁴, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2016 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2016
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147753 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Singular Instantons and Painlevé VI / R. Muñiz Manasliski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 24 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147753 |
|---|---|
| record_format |
dspace |
| spelling |
Muñiz Manasliski, R. 2019-02-15T19:10:27Z 2019-02-15T19:10:27Z 2016 Singular Instantons and Painlevé VI / R. Muñiz Manasliski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 24 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34M55; 53C07; 53C28 DOI:10.3842/SIGMA.2016.057 https://nasplib.isofts.kiev.ua/handle/123456789/147753 We consider a two parameter family of instantons, which is studied in [Sadun L., Comm. Math. Phys. 163 (1994), 257-291], invariant under the irreducible action of SU₂ on S⁴, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé VI equations (PVI) and we will give an explicit expression of the map between instantons and solutions to PVI. The solutions are algebraic only for that values of the parameters which correspond to the instantons that can be extended to all of S⁴. This work is a generalization of [Muñiz Manasliski R., Contemp. Math., Vol. 434, Amer. Math. Soc., Providence, RI, 2007, 215-222] and [Muñiz Manasliski R., J. Geom. Phys. 59 (2009), 1036-1047, arXiv:1602.07221], where instantons without singularities are studied. s The author would like to thank Nigel Hitchin for his suggestion to look at instantons with holonomic singularities and Gil Bor for many useful conversations. We also thank the referees for many useful suggestions that help to improve the paper. This work was partially supported by Grupo CSIC 618 (UdelaR, Uruguay). en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Singular Instantons and Painlevé VI Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Singular Instantons and Painlevé VI |
| spellingShingle |
Singular Instantons and Painlevé VI Muñiz Manasliski, R. |
| title_short |
Singular Instantons and Painlevé VI |
| title_full |
Singular Instantons and Painlevé VI |
| title_fullStr |
Singular Instantons and Painlevé VI |
| title_full_unstemmed |
Singular Instantons and Painlevé VI |
| title_sort |
singular instantons and painlevé vi |
| author |
Muñiz Manasliski, R. |
| author_facet |
Muñiz Manasliski, R. |
| publishDate |
2016 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We consider a two parameter family of instantons, which is studied in [Sadun L., Comm. Math. Phys. 163 (1994), 257-291], invariant under the irreducible action of SU₂ on S⁴, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé VI equations (PVI) and we will give an explicit expression of the map between instantons and solutions to PVI. The solutions are algebraic only for that values of the parameters which correspond to the instantons that can be extended to all of S⁴. This work is a generalization of [Muñiz Manasliski R., Contemp. Math., Vol. 434, Amer. Math. Soc., Providence, RI, 2007, 215-222] and [Muñiz Manasliski R., J. Geom. Phys. 59 (2009), 1036-1047, arXiv:1602.07221], where instantons without singularities are studied.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147753 |
| citation_txt |
Singular Instantons and Painlevé VI / R. Muñiz Manasliski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 24 назв. — англ. |
| work_keys_str_mv |
AT munizmanasliskir singularinstantonsandpainlevevi |
| first_indexed |
2025-12-07T18:54:25Z |
| last_indexed |
2025-12-07T18:54:25Z |
| _version_ |
1850876798019043328 |