Singular Instantons and Painlevé VI

We consider a two parameter family of instantons, which is studied in [Sadun L., Comm. Math. Phys. 163 (1994), 257-291], invariant under the irreducible action of SU₂ on S⁴, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2016
1. Verfasser: Muñiz Manasliski, R.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147753
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Singular Instantons and Painlevé VI / R. Muñiz Manasliski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 24 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147753
record_format dspace
spelling Muñiz Manasliski, R.
2019-02-15T19:10:27Z
2019-02-15T19:10:27Z
2016
Singular Instantons and Painlevé VI / R. Muñiz Manasliski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 24 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 34M55; 53C07; 53C28
DOI:10.3842/SIGMA.2016.057
https://nasplib.isofts.kiev.ua/handle/123456789/147753
We consider a two parameter family of instantons, which is studied in [Sadun L., Comm. Math. Phys. 163 (1994), 257-291], invariant under the irreducible action of SU₂ on S⁴, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé VI equations (PVI) and we will give an explicit expression of the map between instantons and solutions to PVI. The solutions are algebraic only for that values of the parameters which correspond to the instantons that can be extended to all of S⁴. This work is a generalization of [Muñiz Manasliski R., Contemp. Math., Vol. 434, Amer. Math. Soc., Providence, RI, 2007, 215-222] and [Muñiz Manasliski R., J. Geom. Phys. 59 (2009), 1036-1047, arXiv:1602.07221], where instantons without singularities are studied.
s The author would like to thank Nigel Hitchin for his suggestion to look at instantons with holonomic singularities and Gil Bor for many useful conversations. We also thank the referees for many useful suggestions that help to improve the paper. This work was partially supported by Grupo CSIC 618 (UdelaR, Uruguay).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Singular Instantons and Painlevé VI
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Singular Instantons and Painlevé VI
spellingShingle Singular Instantons and Painlevé VI
Muñiz Manasliski, R.
title_short Singular Instantons and Painlevé VI
title_full Singular Instantons and Painlevé VI
title_fullStr Singular Instantons and Painlevé VI
title_full_unstemmed Singular Instantons and Painlevé VI
title_sort singular instantons and painlevé vi
author Muñiz Manasliski, R.
author_facet Muñiz Manasliski, R.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We consider a two parameter family of instantons, which is studied in [Sadun L., Comm. Math. Phys. 163 (1994), 257-291], invariant under the irreducible action of SU₂ on S⁴, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé VI equations (PVI) and we will give an explicit expression of the map between instantons and solutions to PVI. The solutions are algebraic only for that values of the parameters which correspond to the instantons that can be extended to all of S⁴. This work is a generalization of [Muñiz Manasliski R., Contemp. Math., Vol. 434, Amer. Math. Soc., Providence, RI, 2007, 215-222] and [Muñiz Manasliski R., J. Geom. Phys. 59 (2009), 1036-1047, arXiv:1602.07221], where instantons without singularities are studied.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147753
citation_txt Singular Instantons and Painlevé VI / R. Muñiz Manasliski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 24 назв. — англ.
work_keys_str_mv AT munizmanasliskir singularinstantonsandpainlevevi
first_indexed 2025-12-07T18:54:25Z
last_indexed 2025-12-07T18:54:25Z
_version_ 1850876798019043328