Reflection Positive Stochastic Processes Indexed by Lie Groups

Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2016
Hauptverfasser: Jorgensen, P.E.T., Neeb, K.H., Ólafsson, G.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147754
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Reflection Positive Stochastic Processes Indexed by Lie Groups / P.E.T. Jorgensen, K.H. Neeb, G. Ólafsson // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 68 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147754
record_format dspace
spelling Jorgensen, P.E.T.
Neeb, K.H.
Ólafsson, G.
2019-02-15T19:11:21Z
2019-02-15T19:11:21Z
2016
Reflection Positive Stochastic Processes Indexed by Lie Groups / P.E.T. Jorgensen, K.H. Neeb, G. Ólafsson // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 68 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 22E45; 60G15; 81S40
DOI:10.3842/SIGMA.2016.058
https://nasplib.isofts.kiev.ua/handle/123456789/147754
Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symmetric Lie groups (Lie groups with an involution) and results in a transformation of a unitary representation of a symmetric Lie group to a unitary representation of its Cartan dual. In this article we continue our investigation of representation theoretic aspects of reflection positivity by discussing reflection positive Markov processes indexed by Lie groups, measures on path spaces, and invariant gaussian measures in spaces of distribution vectors. This provides new constructions of reflection positive unitary representations.
The research of P. Jorgensen was partially supported by the Binational Science Foundation Grant number 2010117. The research of K.-H. Neeb was supported by DFG-grant NE 413/7-2, Schwerpunktprogramm “Darstellungstheorie”. The research of G. Olafsson was supported by ´ NSF grant DMS-1101337. The authors wish to thank the Mathematisches Forschungsinstitut Oberwolfach for hosting a Workshop on “Reflection Positivity in Representation Theory, Stochastics and Physics” November, 30 – December 6, 2014. The present research was started at the workshop, and it has benefitted from our discussions with the participants there.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Reflection Positive Stochastic Processes Indexed by Lie Groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Reflection Positive Stochastic Processes Indexed by Lie Groups
spellingShingle Reflection Positive Stochastic Processes Indexed by Lie Groups
Jorgensen, P.E.T.
Neeb, K.H.
Ólafsson, G.
title_short Reflection Positive Stochastic Processes Indexed by Lie Groups
title_full Reflection Positive Stochastic Processes Indexed by Lie Groups
title_fullStr Reflection Positive Stochastic Processes Indexed by Lie Groups
title_full_unstemmed Reflection Positive Stochastic Processes Indexed by Lie Groups
title_sort reflection positive stochastic processes indexed by lie groups
author Jorgensen, P.E.T.
Neeb, K.H.
Ólafsson, G.
author_facet Jorgensen, P.E.T.
Neeb, K.H.
Ólafsson, G.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symmetric Lie groups (Lie groups with an involution) and results in a transformation of a unitary representation of a symmetric Lie group to a unitary representation of its Cartan dual. In this article we continue our investigation of representation theoretic aspects of reflection positivity by discussing reflection positive Markov processes indexed by Lie groups, measures on path spaces, and invariant gaussian measures in spaces of distribution vectors. This provides new constructions of reflection positive unitary representations.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147754
citation_txt Reflection Positive Stochastic Processes Indexed by Lie Groups / P.E.T. Jorgensen, K.H. Neeb, G. Ólafsson // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 68 назв. — англ.
work_keys_str_mv AT jorgensenpet reflectionpositivestochasticprocessesindexedbyliegroups
AT neebkh reflectionpositivestochasticprocessesindexedbyliegroups
AT olafssong reflectionpositivestochasticprocessesindexedbyliegroups
first_indexed 2025-11-30T10:12:39Z
last_indexed 2025-11-30T10:12:39Z
_version_ 1850857323945263104