Geometric Monodromy around the Tropical Limit

Let {Vq}q be a complex one-parameter family of smooth hypersurfaces in a toric variety. In this paper, we give a concrete description of the monodromy transformation of {Vq}q around q=∞ in terms of tropical geometry. The main tool is the tropical localization introduced by Mikhalkin.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2016
1. Verfasser: Yamamoto, Y.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147758
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Geometric Monodromy around the Tropical Limit / Y. Yamamoto // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147758
record_format dspace
spelling Yamamoto, Y.
2019-02-15T19:13:44Z
2019-02-15T19:13:44Z
2016
Geometric Monodromy around the Tropical Limit / Y. Yamamoto // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 14T05; 14D05
DOI:10.3842/SIGMA.2016.061
https://nasplib.isofts.kiev.ua/handle/123456789/147758
Let {Vq}q be a complex one-parameter family of smooth hypersurfaces in a toric variety. In this paper, we give a concrete description of the monodromy transformation of {Vq}q around q=∞ in terms of tropical geometry. The main tool is the tropical localization introduced by Mikhalkin.
The author would like to express his gratitude to Kazushi Ueda for encouragement and helpful advices. The author thanks to Tatsuki Kuwagaki for explaining the context of the paper [2]. The author also thanks the anonymous referees for reading this paper carefully and giving many helpful comments. This research is supported by the Program for Leading Graduate Schools, MEXT, Japan.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Geometric Monodromy around the Tropical Limit
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Geometric Monodromy around the Tropical Limit
spellingShingle Geometric Monodromy around the Tropical Limit
Yamamoto, Y.
title_short Geometric Monodromy around the Tropical Limit
title_full Geometric Monodromy around the Tropical Limit
title_fullStr Geometric Monodromy around the Tropical Limit
title_full_unstemmed Geometric Monodromy around the Tropical Limit
title_sort geometric monodromy around the tropical limit
author Yamamoto, Y.
author_facet Yamamoto, Y.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Let {Vq}q be a complex one-parameter family of smooth hypersurfaces in a toric variety. In this paper, we give a concrete description of the monodromy transformation of {Vq}q around q=∞ in terms of tropical geometry. The main tool is the tropical localization introduced by Mikhalkin.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147758
citation_txt Geometric Monodromy around the Tropical Limit / Y. Yamamoto // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT yamamotoy geometricmonodromyaroundthetropicallimit
first_indexed 2025-12-07T16:32:02Z
last_indexed 2025-12-07T16:32:02Z
_version_ 1850867840366673920