Geometric Monodromy around the Tropical Limit
Let {Vq}q be a complex one-parameter family of smooth hypersurfaces in a toric variety. In this paper, we give a concrete description of the monodromy transformation of {Vq}q around q=∞ in terms of tropical geometry. The main tool is the tropical localization introduced by Mikhalkin.
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2016 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2016
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147758 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Geometric Monodromy around the Tropical Limit / Y. Yamamoto // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147758 |
|---|---|
| record_format |
dspace |
| spelling |
Yamamoto, Y. 2019-02-15T19:13:44Z 2019-02-15T19:13:44Z 2016 Geometric Monodromy around the Tropical Limit / Y. Yamamoto // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14T05; 14D05 DOI:10.3842/SIGMA.2016.061 https://nasplib.isofts.kiev.ua/handle/123456789/147758 Let {Vq}q be a complex one-parameter family of smooth hypersurfaces in a toric variety. In this paper, we give a concrete description of the monodromy transformation of {Vq}q around q=∞ in terms of tropical geometry. The main tool is the tropical localization introduced by Mikhalkin. The author would like to express his gratitude to Kazushi Ueda for encouragement and helpful advices. The author thanks to Tatsuki Kuwagaki for explaining the context of the paper [2]. The author also thanks the anonymous referees for reading this paper carefully and giving many helpful comments. This research is supported by the Program for Leading Graduate Schools, MEXT, Japan. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Geometric Monodromy around the Tropical Limit Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Geometric Monodromy around the Tropical Limit |
| spellingShingle |
Geometric Monodromy around the Tropical Limit Yamamoto, Y. |
| title_short |
Geometric Monodromy around the Tropical Limit |
| title_full |
Geometric Monodromy around the Tropical Limit |
| title_fullStr |
Geometric Monodromy around the Tropical Limit |
| title_full_unstemmed |
Geometric Monodromy around the Tropical Limit |
| title_sort |
geometric monodromy around the tropical limit |
| author |
Yamamoto, Y. |
| author_facet |
Yamamoto, Y. |
| publishDate |
2016 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
Let {Vq}q be a complex one-parameter family of smooth hypersurfaces in a toric variety. In this paper, we give a concrete description of the monodromy transformation of {Vq}q around q=∞ in terms of tropical geometry. The main tool is the tropical localization introduced by Mikhalkin.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147758 |
| citation_txt |
Geometric Monodromy around the Tropical Limit / Y. Yamamoto // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT yamamotoy geometricmonodromyaroundthetropicallimit |
| first_indexed |
2025-12-07T16:32:02Z |
| last_indexed |
2025-12-07T16:32:02Z |
| _version_ |
1850867840366673920 |