Random Tensors and Quantum Gravity

We provide an informal introduction to tensor field theories and to their associated renormalization group. We focus more on the general motivations coming from quantum gravity than on the technical details. In particular we discuss how asymptotic freedom of such tensor field theories gives a concre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2016
1. Verfasser: Rivasseau, V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147766
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Random Tensors and Quantum Gravity / V. Rivasseau // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 92 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147766
record_format dspace
spelling Rivasseau, V.
2019-02-15T19:17:28Z
2019-02-15T19:17:28Z
2016
Random Tensors and Quantum Gravity / V. Rivasseau // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 92 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 60B20; 81T15; 81T16; 81T17; 82B28
DOI:10.3842/SIGMA.2016.069
https://nasplib.isofts.kiev.ua/handle/123456789/147766
We provide an informal introduction to tensor field theories and to their associated renormalization group. We focus more on the general motivations coming from quantum gravity than on the technical details. In particular we discuss how asymptotic freedom of such tensor field theories gives a concrete example of a natural ''quantum relativity'' postulate: physics in the deep ultraviolet regime becomes asymptotically more and more independent of any particular choice of Hilbert basis in the space of states of the universe.
This paper is a contribution to the Special Issue on Tensor Models, Formalism and Applications. The full collection is available at http://www.emis.de/journals/SIGMA/Tensor Models.html. We thank R. Avohou, D. Benedetti, J. Ben Geloun, V. Bonzom, S. Carrozza, S. Dartois, T. Delepouve, O. Samary Dine, R. Gurau, T. Krajewski, V. Lahoche, L. Lionni, D. Oriti, A. Tanasa, F. Vignes-Tourneret and R. Wulkenhaar for discussions and contributions on many aspects of the tensor track program.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Random Tensors and Quantum Gravity
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Random Tensors and Quantum Gravity
spellingShingle Random Tensors and Quantum Gravity
Rivasseau, V.
title_short Random Tensors and Quantum Gravity
title_full Random Tensors and Quantum Gravity
title_fullStr Random Tensors and Quantum Gravity
title_full_unstemmed Random Tensors and Quantum Gravity
title_sort random tensors and quantum gravity
author Rivasseau, V.
author_facet Rivasseau, V.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We provide an informal introduction to tensor field theories and to their associated renormalization group. We focus more on the general motivations coming from quantum gravity than on the technical details. In particular we discuss how asymptotic freedom of such tensor field theories gives a concrete example of a natural ''quantum relativity'' postulate: physics in the deep ultraviolet regime becomes asymptotically more and more independent of any particular choice of Hilbert basis in the space of states of the universe.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147766
citation_txt Random Tensors and Quantum Gravity / V. Rivasseau // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 92 назв. — англ.
work_keys_str_mv AT rivasseauv randomtensorsandquantumgravity
first_indexed 2025-11-29T00:21:44Z
last_indexed 2025-11-29T00:21:44Z
_version_ 1850854293840592896